Ultra-Processed Foods and Childhood Obesity
超加工食品和儿童肥胖
基本信息
- 批准号:10063710
- 负责人:
- 金额:$ 8.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-10 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdultAgeAlgorithmsAwardBody mass indexCaloriesCarbohydratesCardiovascular DiseasesChildChildhoodClassificationCodeCohort AnalysisComputer softwareConsumptionControl GroupsCounselingDataData SetDietDietary intakeEatingEnergy IntakeEnrollmentEvaluationExposure toFamilyFatty acid glycerol estersFoodFood AccessFood ProcessingFoundationsFundingFutureGenerationsGoalsGrowthGuidelinesHealthHeightHourIndividualIntakeInterventionKnowledgeLinkLogistic RegressionsLow Income PopulationLow incomeMalignant NeoplasmsMapsMeasurementMeasuresMentorsMethodologyMethodsMinorityModelingMothersNational Heart, Lung, and Blood InstituteNon obeseNursery SchoolsNutritionalObesityOutcomeParentsPatternPoliciesPopulationPreschool ChildPreventive InterventionProcessProteinsRandomized Controlled TrialsResearchRiskRisk FactorsRoleSchoolsSystemTestingTimeUnderserved PopulationUnited StatesWeightagedarmbasecohortdisparity reductionearly childhoodeffective interventionevidence basefollow-upfood consumptionhealth disparityimprovedinterestminority childrennovelnutritionnutritional epidemiologynutritional guidelineobesity in childrenobesity preventionobesity riskobesity treatmentpreventprimary outcomeprogramsprospectiverandomized trialsecondary analysissugartreatment arm
项目摘要
PROJECT SUMMARY
Despite a broad understanding of the multi-level determinants of health disparities in childhood obesity, known
risk factors including diet and physical often do not adequately predict later obesity among low-income and
minority children. Developing effective intervention targets for childhood obesity in these populations is
therefore difficult. Emerging evidence suggests that ultra-processed food consumption may partially explain
health disparities in cardiovascular disease and cancer among adults. However, existing methods to classify
foods based on the extent of processing are inconsistent and unclear, making it difficult to assess exposure to
ultra-processed foods and associations with childhood weight outcomes. The current proposal will apply the
NOVA classification for ultra-processed foods to dietary recall data from an NHLBI-funded childhood obesity
prevention randomized controlled trial. Developing a reliable and valid methodology for assessing ultra-
processed food consumption and testing associations with childhood obesity will generate evidence to better
characterize dietary intake and to identify potential targets for reducing health disparities in childhood obesity.
This proposal builds on a robust dataset from the Growing Right Onto Wellness (GROW) trial, which aimed to
prevent childhood obesity using a three-year multi-level and culturally-tailored intervention. The trial
randomized 610 parent-preschool child pairs and achieved >90% retention at three-year follow-up, with high
rates of data completeness. Eligible children were ages 3-5 at enrollment, spoke English or Spanish, and had
BMI ≥50th percentile and <95th percentile. The dataset includes 24-hour diet recall data collected using NDS-R
software at baseline and three annual follow-up timepoints. The current proposal will develop and validate a
novel coding algorithm to map the existing NOVA classification system for ultra-processed foods onto this diet
recall data. This algorithm will generate an analytic variable that describes the number of calories consumed
per day in each of the four NOVA classifications for food processing level.
Using the newly developed approach to assessing ultra-processed food consumption, we will test the
association between higher levels of ultra-processed foods and childhood obesity across 3 years of follow up.
The main exposure variable will be the number of daily calories consumed for ultra-processed foods and the
primary outcome will be child raw BMI. The goals of this proposal are to 1) advance dietary measurement by
developing a novel methodology for evaluating levels of ultra-processed food consumption using diet recall
data; 2) assess whether ultra-processed food consumption level is predictive of incident obesity among low-
income, minority preschoolers; and 3) develop evidence for intervention targets for future R01 funding.
项目概要
尽管人们对儿童肥胖健康差异的多层次决定因素有广泛的了解,但已知
包括饮食和身体在内的危险因素通常不能充分预测低收入人群后来的肥胖情况
少数民族儿童。针对这些人群的儿童肥胖制定有效的干预目标是
因此困难。新的证据表明,超加工食品的消费可能部分解释
成年人心血管疾病和癌症的健康差异。然而现有的分类方法
基于加工程度的食品不一致且不明确,因此很难评估其接触程度
超加工食品及其与儿童体重结果的关联。目前的提案将应用
超加工食品的 NOVA 分类与 NHLBI 资助的儿童肥胖症的饮食回忆数据
预防随机对照试验。开发一种可靠且有效的方法来评估超
加工食品消费和测试与儿童肥胖的关联将为更好地提供证据
描述膳食摄入量并确定减少儿童肥胖健康差异的潜在目标。
该提案建立在 Growing Right Onto Wellness (GROW) 试验的强大数据集之上,旨在
通过为期三年的多层次、针对文化的干预措施来预防儿童肥胖。审判
对 610 组家长与学龄前儿童进行随机分组,三年随访时保留率超过 90%,且保留率很高
数据完整性率。符合资格的儿童在入学时年龄为 3 至 5 岁,会说英语或西班牙语,并且具有
BMI ≥50% 且 <95%。该数据集包括使用 NDS-R 收集的 24 小时饮食回忆数据
基线和三个年度随访时间点的软件。当前的提案将开发并验证
新颖的编码算法将现有的超加工食品 NOVA 分类系统映射到这种饮食中
调用数据。该算法将生成一个分析变量来描述消耗的卡路里数
食品加工级别的四个 NOVA 分类中的每一个分类中的每天。
使用新开发的方法来评估超加工食品的消费,我们将测试
三年随访期间,较高水平的超加工食品与儿童肥胖之间存在关联。
主要的暴露变量是每天消耗超加工食品的卡路里数和
主要结果是儿童原始体重指数。该提案的目标是 1)通过以下方式推进饮食测量:
开发一种利用饮食回忆来评估超加工食品消费水平的新方法
数据; 2)评估超加工食品的消费水平是否可以预测低收入人群的肥胖事件
收入、少数学龄前儿童; 3) 为未来 R01 资金的干预目标提供证据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Heerman其他文献
William Heerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Heerman', 18)}}的其他基金
The ADAPT Trial: Adapting Evidence-Based Obesity Interventions in Community Settings
ADAPT 试验:在社区环境中采用循证肥胖干预措施
- 批准号:
10585810 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10439470 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10657431 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10240284 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
COACH: Competency Based Approaches for Community Health
COACH:基于能力的社区健康方法
- 批准号:
10655736 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
GROW Baby: Improving Maternal Gestational Weight Gain and Infant Growth in the Growing Right Onto Wellness (GROW) Trial
GROW Baby:在 Growing Right Onto Wellness (GROW) 试验中改善母亲妊娠期体重增加和婴儿生长
- 批准号:
9032820 - 财政年份:2016
- 资助金额:
$ 8.65万 - 项目类别:
GROW Baby: Improving Maternal Gestational Weight Gain and Infant Growth in the Growing Right Onto Wellness (GROW) Trial
GROW Baby:在 Growing Right Onto Wellness (GROW) 试验中改善母亲妊娠期体重增加和婴儿生长
- 批准号:
9198254 - 财政年份:2016
- 资助金额:
$ 8.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.65万 - 项目类别:
Research Grant














{{item.name}}会员




