The role of salt and SGK1 on NADPH oxidase stabilization in dendritic cells in hypertension
盐和 SGK1 对高血压树突状细胞 NADPH 氧化酶稳定的作用
基本信息
- 批准号:10063425
- 负责人:
- 金额:$ 5.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adoptive TransferAdultAgeAmericanAngiotensin IIBlood PressureBlood VesselsCardiovascular DiseasesCardiovascular systemCellsChronic Kidney FailureCoronary heart diseaseDataDendritic CellsDendritic cell activationDiseaseDockingDoseElectron Spin Resonance SpectroscopyEnvironmentEssential HypertensionEventExcess Dietary SaltFlow CytometryGeneral PopulationGeneticGuidelinesHalf-LifeHeart failureHypertensionImmuneImmune responseImmune systemImmunoprecipitationInflammationKidneyLaboratoriesLysineMannitolMass Spectrum AnalysisMeasuresMentorshipMorbidity - disease rateMusMyocardial InfarctionNADPH OxidasePathogenesisPathway interactionsPharmacologyPhenotypePhosphotransferasesPhysiologyPositioning AttributePostdoctoral FellowProductionProtein SubunitsProteinsResearchRodent ModelRoleSeriesSgk proteinSiteSkeletal MuscleSkinSocietiesSodiumSodium ChlorideStrokeSuperoxidesTestingTrainingUbiquitinationUp-RegulationWorkadductbaseblood pressure regulationcareerepithelial Na+ channelexperienceexperimental studyextracellularimmune activationin vivomortalitynovelnovel therapeuticspreventrenal damageresponsesalt intakesalt sensitive hypertension
项目摘要
PROJECT SUMMARY
Hypertension is the leading cause of morbidity and mortality from stroke, myocardial infarction, heart
failure, and chronic kidney disease. Despite the importance of blood pressure control, the pathogenesis
of essential hypertension remains poorly understood. In the past several years it has become clear that
sodium can accumulate in the interstitium, particularly in the skin and skeletal muscle and that these
modestly elevated concentrations of sodium can drive immune cell activation. Our laboratory has
recently described a new pathway by which extracellular sodium activates NADPH oxidase in dendritic
cells and showed that this promotes isolevuglandin-adducts that are recognized as non-self and evoke
an immune response. I propose that salt stabilizes NADPH oxidase subunits, specifically p22phox, via
serum and glucocorticoid-regulated kinase 1 (SGK1) in dendritic cells (DCs), which leads to the
promotion of hypertension. In Aim 1, I will test the hypothesis that stabilization of p22phox protein in
response to salt is dependent on SGK1 and to determine if this promotes DC activation and
hypertension. In this aim I will use mice in which we have deleted SGK1 specifically in DCs. In the first
part of this aim, I will demonstrate if this increased sodium indeed enhances stability of the NADPH
oxidase protein subunits and if this is dependent on SGK1. In a second series of experiments, I will
examine the effect of SGK1 on the phenotype of DCs. DCs will be analyzed by flow cytometry and for
superoxide production by electron spin resonance. In additional experiments, I will examine the in vivo
role of SGK1 in DCs. I will perform adoptive transfer of dendritic cells co-treated with mannitol or high
salt into naïve mice and measure blood pressure by radiotelemetry. I predict that deletion of SGK1
prevents NADPH oxidase subunit stabilization, production of superoxide, and increase is blood
pressure with low dose angiotensin II. In aim 2, I will determine if NADPH oxidase subunits p22phox,
p47phox, and/or gp91phox are ubiquitinated in response to salt via SGK1, and to determine if this
promotes DC activation and hypertension. In these studies, we will perform immunoprecipitation of the
NADPH oxidase subunits p22phox, p47phox and gp91phox. We will use mass spectrometry to identify
ubiquitinated lysines of the NADPH oxidase subunits. In additional experiments, we will assess p22phox,
p47phox, and gp91phox ubiquitination in vivo utilizing a rodent model of salt-sensitive hypertension. I
predict that NADPH oxidase subunits will be stabilized during high salt treatment, and that genetic
deletion of SGK1 will prevent this in DCs. This will advance our understanding of hypertension and will
provide new therapeutic directions for this disease.
项目摘要
高血压是中风,心肌梗塞,心脏的发病率和死亡率的主要原因
失败和慢性肾脏疾病。尽管血压控制很重要,但发病机理
基本的高血压仍然知之甚少。在过去的几年中,很明显
钠可以在间质中积聚,尤其是在皮肤和骨骼肌中,这些
钠的浓度适度升高会驱动免疫细胞激活。我们的实验室有
最近描述了一种新途径,细胞外钠激活树突状的氧化物
细胞并表明这促进了被认为是非自我并引起唤起的异甲列列扬蛋白添加剂
免疫响应。我建议盐稳定纳德氧化物亚基,特别是p22phox,
树突状细胞(DCS)中的血清和糖皮质激素调节的激酶1(SGK1),这导致导致
促进高血压。在AIM 1中,我将检验以下假设:p22phox蛋白在
对盐的反应取决于SGK1,并确定这是否促进了直流激活和
高血压。在此目标中,我将使用在DC中专门删除SGK1的小鼠。在第一个
该目标的一部分,我将证明这种增加的钠是否确实提高了NADPH的稳定性
氧化酶蛋白亚基,如果这取决于SGK1。在第二个实验中,我将
检查SGK1对DC表型的影响。 DC将通过流式细胞仪和用于分析
通过电子自旋共振产生超氧化物。在其他实验中,我将检查体内
SGK1在DC中的作用。我将执行与甘露醇或高的树突状细胞的自适应转移
盐分为幼稚的小鼠,并通过放射性骨化测量血压。我预测SGK1的删除
防止NADPH氧化亚基稳定,超氧化物的产生和增加是血液
低剂量血管紧张素II的压力。在AIM 2中,我将确定NADPH氧化物亚基是否是P22Phox,
p47phox和/或gp91phox因通过sgk1响应盐而泛素化,并确定这是否是
促进直流激活和高血压。在这些研究中,我们将对
NADPH氧化酶亚基P22Phox,P47Phox和GP91Phox。我们将使用质谱法来识别
NADPH氧化酶亚基的泛素化歌词。在其他实验中,我们将评估P22Phox,
p47phox和GP91PHOX在体内使用啮齿动物敏感高血压模型。我
预测NADPH氧化亚基将在高盐处理期间稳定,并且该遗传
SGK1的删除将在DCS中阻止这种情况。这将提高我们对高血压的理解,并将
为该疾病提供新的治疗方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Pieter Van Beusecum其他文献
Justin Pieter Van Beusecum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Pieter Van Beusecum', 18)}}的其他基金
A Role of GAS6/Axl Signaling in the Development of Essential Hypertension
GAS6/Axl 信号传导在原发性高血压发展中的作用
- 批准号:
10664913 - 财政年份:2021
- 资助金额:
$ 5.92万 - 项目类别:
A Role of GAS6/Axl Signaling in the Development of Essential Hypertension
GAS6/Axl 信号传导在原发性高血压发展中的作用
- 批准号:
10447079 - 财政年份:2021
- 资助金额:
$ 5.92万 - 项目类别:
A Role of GAS6/Axl Signaling in the Development of Essential Hypertension
GAS6/Axl 信号传导在原发性高血压发展中的作用
- 批准号:
10255052 - 财政年份:2021
- 资助金额:
$ 5.92万 - 项目类别:
A Role of GAS6/Axl Signaling in the Development of Essential Hypertension
GAS6/Axl 信号传导在原发性高血压发展中的作用
- 批准号:
10610110 - 财政年份:2021
- 资助金额:
$ 5.92万 - 项目类别:
The role of salt and SGK1 on NADPH oxidase stabilization in dendritic cells in hypertension
盐和 SGK1 对高血压树突状细胞 NADPH 氧化酶稳定的作用
- 批准号:
9761140 - 财政年份:2019
- 资助金额:
$ 5.92万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the role of type I interferon signaling and macrophage-derived inflammation in the juvenile host with viral pneumonia
阐明 I 型干扰素信号传导和巨噬细胞衍生炎症在病毒性肺炎幼年宿主中的作用
- 批准号:
10651426 - 财政年份:2023
- 资助金额:
$ 5.92万 - 项目类别:
Mechanisms Driving Enhanced Susceptibility of Females versus Males to High-Fat Diet-Induced Increases in High Blood Pressure
女性与男性相比,对高脂肪饮食引起的高血压的易感性增强的机制
- 批准号:
10714531 - 财政年份:2023
- 资助金额:
$ 5.92万 - 项目类别:
Impact of Aging on Oxysterol Regulation of Alveolar Macrophage Function during S. pneumoniae
衰老对肺炎链球菌期间肺泡巨噬细胞功能的氧甾醇调节的影响
- 批准号:
10737015 - 财政年份:2023
- 资助金额:
$ 5.92万 - 项目类别:
The role of lymph node structural organization in naïve T cell decline with age
淋巴结结构组织在幼稚 T 细胞随年龄下降中的作用
- 批准号:
10730844 - 财政年份:2023
- 资助金额:
$ 5.92万 - 项目类别:
Mucosal Associated Invariant T cells in the Obese-asthma endotype
肥胖哮喘内型中的粘膜相关不变 T 细胞
- 批准号:
10607523 - 财政年份:2023
- 资助金额:
$ 5.92万 - 项目类别: