Improving hiPSC cardiomyocyte engraftment and integration with nanowired human cardiac organoids

改善 hiPSC 心肌细胞的植入以及与纳米线人类心脏类器官的整合

基本信息

  • 批准号:
    10058763
  • 负责人:
  • 金额:
    $ 3.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: In the U.S. alone, there are more than 735,000 myocardial infarctions (MI) each year, suggesting a pressing need to develop treatments for repairing injured hearts. Due to the limited regenerative capacity of adult hearts, human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) have received significant attention due to their demonstrated capacity for remuscularization and restoration of contractile function upon transplantation to injured hearts. Despite the progress, the current approach is limited by low cell retention and poor integration when delivered as dissociated cells or engineered cardiac tissue patches. To address these challenges, we pioneered the use of electrically conductive silicon nanowires (e- SiNWs) to facilitate self-assembly of hiPSC-CMs to form nanowired hiPSC cardiac spheroids. Our in vivo studies showed the nanowired spheroids improve cell retention and engraftment after transplantation, presumably due to their 3D microtissue configuration and the e-SiNW enhanced electrical integration. To improve cell survival and engraftment in injured hearts, I recently developed an organoid fabrication protocol where we seed the supporting cells (e.g., endothelial cells, cardiac fibroblasts, human adipose stem cells) onto nanowired hiPSC cardiac spheroids. My preliminary data showed sizeable engraftments of nanowired cardiac organoids in ischemia/reperfusion (I/R) injured rat hearts, with rapid infiltration of host vasculature and improved organization and development of contractile structures, when compared to non-nanowired cardiac organoids. The goal of this proposal is to determine the effects of e-SiNWs and prevascularization of the organoids on hiPSC-CM engraftment and integration (Aim 1) and demonstrate the translational potential of nanowired human cardiac organoids in repairing infarcted hearts (Aim 2). The central hypotheses of this proposal are 1) the e-SiNWs can improve the contractile development of the transplanted organoids, and 2) the lumen-like vasculature in the organoids can allow for rapid anastomosis with host myocardium. The proposal is innovative in that, for the first time, we will synergize e-SiNWs and pre-vascularized, injectable 3D cardiac microtissues to develop a scalable platform to effectively engraft hiPSC-CMs and improve their integration with adult myocardium. My long-term goal is to make significant contributions towards advancing development of cell-based therapies for repairing cardiac injury. Accordingly, we will pursue the following specific aims: 1) Determine the effects of e- SiNWs and prevascularization in nanowired organoids on contractile development and vascular integration with host myocardium in healthy rat hearts, and 2) Determine therapeutic efficacy of nanowired human cardiac organoids with injured rat hearts. The proposed research would, for the first time, allow us to investigate the synergistic effect of e-SiNWs and supporting cell-types on hiPSC-CM engraftment and integration in injured hearts. This research will provide the foundation to use nanowired human cardiac organoid to pursue large animal studies and accelerate their translational applications.
项目概述:仅在美国,每年就有超过735,000例心肌梗死(MI), 这表明迫切需要开发修复受损心脏的治疗方法。由于有限的再生 成人心脏的能力,人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)具有 由于其表现出的肌肉化和恢复的能力, 移植到受损心脏后的收缩功能。尽管取得了进展,但目前的做法是有限的 当作为解离细胞或工程化心脏组织递送时, 补丁.为了应对这些挑战,我们率先使用导电硅纳米线(e- SiNW)以促进hiPSC-CM的自组装以形成染色的hiPSC心脏球状体。我们的体内研究 结果显示,染色的球状体改善了移植后的细胞保留和植入,这可能是由于 它们的3D微组织配置和e-SiNW增强的电集成。为了提高细胞存活率 和植入受伤的心脏,我最近开发了一个类器官制造协议,我们种子, 支持细胞(例如,内皮细胞、心脏成纤维细胞、人脂肪干细胞)上 心脏球体我的初步数据显示, 缺血/再灌注(I/R)损伤大鼠心脏,伴有宿主血管的快速浸润和组织化改善 和收缩结构的发育。的目标 该建议旨在确定e-SiNW和类器官的预血管化对hiPSC-CM的影响 移植和整合(目的1),并证明了转基因人心脏的翻译潜力 类器官修复梗死心脏(目的2)。该提议的中心假设是1)e-SiNW 可以改善移植的类器官的收缩发育,和2)在类器官中的管腔样脉管系统, 类器官可以允许与宿主心肌快速吻合。该提案的创新之处在于, 第一次,我们将协同e-SiNW和预血管化,可注射的3D心脏微组织, 可扩展的平台,以有效地植入hiPSC-CM并改善其与成人心肌的整合。我 长期目标是为推进基于细胞的治疗的发展做出重大贡献, 修复心脏损伤因此,我们将追求以下具体目标:1)确定电子商务的影响- SiNWs和预血管化对类器官收缩发育和血管整合的影响 健康大鼠心脏的宿主心肌,和2)确定移植的人心脏的治疗效果 类器官和受损的老鼠心脏这项拟议中的研究将首次使我们能够调查 e-SiNW和支持细胞类型对损伤hiPSC-CM植入和整合的协同作用 心中本研究将为利用人心脏类器官进行大规模的研究提供基础。 动物研究,并加速其转化应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Coyle其他文献

Robert Coyle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.68万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了