Erythromycin-doped nanofiber coating to increase implant longevity

掺红霉素的纳米纤维涂层可延长植入物的使用寿命

基本信息

  • 批准号:
    10062408
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection are the two main causes of implant failure and loosening. There is an urgent need for orthopedic implants that both promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or the physiology of the patients. The goal of this study is to develop a bactericidal “bone-like” nanofiber (NF) coating to enhance osseointegration while preventing implant infection. To imitate the architecture of the natural bone matrix, we developed coaxial electrospun NFs composed of poly (lactide-co-glycolide) (PLGA) and polyvinyl alcohol (PVA) polymers arranged in a core- sheath configuration. PLGA is a FDA-approved co-polymer with long clinical experience as a carrier for sustained drug release. Type I collagen (Col) was embedded in the PLGA to form a bioactive PLGACol sheath fiber. PVA has a good fiber-forming capability and will be used to encapsulate nanoscale hydroxyapatite (HA) to form a hydrophilic PVAHA core fiber. The PLGACol/PVAHA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of bone marrow stromal cells (BMSCs). In the proposed study, we will embed erythromycin (EM, bactericidal and anti-osteoclastic) into PLGACol/PVAHA NFs. We hypothesize that NFs will mimic the biological, structural and mechanical behaviors of natural bone, and enhance the adhesion, growth and differentiation of BMSCs. We propose that the embedding of EM in the PLGACol/PVAHA NFs will inhibit bacterial colonization and promote implant osseointegration because of its stimulatory activity of bone healing. We will test our hypothesis by pursuing three Aims: Aim 1: Develop an optimal PLGACol/PVAHA NF formulation for titanium (Ti) implant coating: (a) Define an optimal NF formulation based on the cellular response (viability, proliferation and osteogenic differentiation of rat BMSCs, and (b) Further optimize the bonding strength of NF coating to the Ti implant in an ex vivo porcine bone implantation model; Aim 2: Characterize the effects of EM doping of PLGACol/PVAHA NFs on the cellular response, bacterial growth and biofilm formation in vitro. We propose that EM doping will change the physiochemical nature of NFs (morphology, surface topology, degradation, mechanical strength and EM release dynamics, Aim 2a), which will impact on the cellular response (viability, proliferation and osteogenic differentiation of rat BMSCs, Aim 2b), and bacterial growth and biofilm formation (adhesion, viability and biofilm formation of Staphylococcus aureus, S. aureus, Aim 2c), and Aim 3: Determine the effects of EM doping of PLGACol/PVAHANFs on infection inhibition and osseointegration in a rat S. aureus- infected tibia implantation model. We will determine whether the EM-NF coating is sufficient to inhibit implant infection (bacterial culture, biofilm formation) and enhance osseointegration (pullout test, bone histomorphometry, and micro computed tomography, CT). We expect that a sustained release of EM from NF coating will inhibit implant infection and further promote osseointegration due to its proven osteogenic and bactericidal activities. The proposed work is innovative, because it capitalizes on a new strategy of implant surface fabrication by providing a “bone-like” nanoscale topology and a reservoir of controllable sustained drug release. It is our expectation that the resultant approach will provide solid evidence favoring the advantages of the proposed NF coated medical devices over those currently available. These results will be significant, because they are expected to improve the success of total joint replacement and increase implant longevity. It should not appreciably increase the cost of the implant. This will improve the quality of life for these patients and provide a significant healthcare savings.
骨整合失败(通过骨-种植体表面的骨形成直接固定种植体)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WEIPING REN其他文献

WEIPING REN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WEIPING REN', 18)}}的其他基金

Erythromycin-doped nanofiber coating to increase implant longevity
掺红霉素的纳米纤维涂层可延长植入物的使用寿命
  • 批准号:
    9294197
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了