Merging Temporal Changes in Clinical Informatics, Transcriptomics, and Cytokine Profiles to Understand the Host Response to Bacteremia
合并临床信息学、转录组学和细胞因子谱的时间变化,以了解宿主对菌血症的反应
基本信息
- 批准号:10022505
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAllergicAwardBacteremiaBioinformaticsBiologicalBiological AssayBiologyBloodBlood specimenClinicalClinical DataClinical InformaticsComputerized Medical RecordConsentDataData SetDetectionDevelopmentDiagnosisDiagnosticDiseaseDoctor of PhilosophyEnrollmentEscherichia coliFunctional disorderFundingGene ExpressionGoalsHourImmuneImmune TargetingImmune responseImmunologistInfectionInflammatory ResponseKnowledgeLaboratoriesLeukocytesLifeMachine LearningMeasuresMediatingMessenger RNAMicrobiologyModelingNatureOrganOrgan failurePatientsPharmaceutical PreparationsPhysiciansPlasmaPlasma ProteinsPrecision therapeuticsProteinsResearchResearch PersonnelSamplingScientistSepsisSiteStaphylococcus aureusSubgroupSupportive careTechniquesTechnologyTimeTissuesTrainingTranscriptValidationViralVirulence FactorsWorkbasebiobankcareerclinical careclinically significantcomorbiditycytokineexperienceimprovedimproved outcomeinsightmachine learning methodmortalitynovelnovel therapeuticsoutcome predictionpathogenpatient subsetspersonalized therapeuticprospectiveresponsesepticseptic patientstranscriptome sequencingtranscriptomics
项目摘要
As an ICU physician and an immunologist, I have devoted my research career to understanding sepsis,
a disease that affects nearly 2 million people annually in the USA. Sepsis is a life-threatening
condition that arises when the body's response to infection injures its own tissues. Great strides
have been made towards improving the clinical care of the septic patient, but the mortality rate
remains >20% for several reasons: First, each sepsis-causing pathogen, be it bacterial, viral, or
fungal, carries its own virulence factors that affect the host response, but unfortunately, much
research has focused on studying septic patients as a group, rather than distinguishing patients
based on microbiologic cause. Second, researchers often study patients once they manifest
sepsis-induced organ failure yet many people sustain infections due to common sepsis
pathogens, like Staphylococcus aureus, but never develop sepsis; understanding the "appropriate"
response to a pathogen is critical to understanding the "inappropriate" response of
sepsis. Finally, much sepsis research occurs in silos; clinician researchers focus on the
electronic medical record, while basic scientists analyze biologic data. Too often, these
groups do not collaborate to share information, even though understanding the biologic
significance of clinical data may be of great value. To address these issues, I propose a unique
approach to understand the host response to infection that incorporates both biologic data and
clinical electronic medical record (EMR) data from patients with S. aureus bacteremia.
By limiting analysis of the host response to infections caused by a single pathogen at a single
site, we can control for the variability induced by pathogen-specific factors. In addition,
by studying all patients with S. aureus bacteremia, and not simply those patients with
sepsis, we can understand both the appropriate host response as well as the inappropriate host
response that characterizes the development of sepsis. With our bank of samples collected from S.
aureus bacteremia patients we will analyze both cellular mRNA transcripts and plasma
protein/cytokine levels, collected at different time points from each patient. We will
combine the results of these analyses with clinical data found in the EMR to provide a correlation
between the biology of the host response and its clinical manifestations. Our per-patient
data, then, will have unprecedented granularity which we can then use to apply machine learning
techniques to identify multi-faceted endotypes that predict outcomes (such as mortality). Once we
have built these endotype models, we will validate them using pilot data collected from newly
enrolled patients with either S. aureus or E. coli bacteremia. This approach will allow
us to identify factors common to the dysregulated host response across all infections, as well as
those that may be specific to the type of infection. Understanding both the
appropriate and the inappropriate host response to infection, and understanding which
aspects of the host response are pathogen-specific (and which are not) will allow development
of novel therapies for this devastating disease.
作为一名重症监护室医生和免疫学家,我致力于了解脓毒症,
这种疾病在美国每年影响近200万人。败血症是一种危及生命的疾病
当身体对感染的反应损伤了自身组织时出现的一种状况。长足进步
已经朝着改善脓毒症患者的临床护理的方向进行了努力,但是死亡率
保持>20%有几个原因:首先,每种引起脓毒症的病原体,无论是细菌,病毒,或
真菌携带自己的毒力因子,影响宿主的反应,但不幸的是,
研究的重点是将脓毒症患者作为一个群体进行研究,而不是区分患者
基于微生物原因。第二,研究人员经常在患者表现出
脓毒症引起的器官衰竭然而许多人由于普通脓毒症而持续感染
病原体,如金黄色葡萄球菌,但从来没有发展脓毒症;了解“适当”
对病原体的反应对于理解病原体的“不适当”反应至关重要。
败血症最后,许多脓毒症研究都是孤立进行的;临床研究人员关注的是
电子医疗记录,而基础科学家分析生物数据。很多时候,这些
群体不合作共享信息,即使了解生物学,
临床数据的意义可能具有很大价值。为了解决这些问题,我提出了一个独特的
了解宿主对感染的反应的方法,包括生物学数据和
临床电子病历(EMR)数据,从患者与S。金黄色菌血症
通过限制分析宿主对单一病原体引起的感染的反应,
位点,我们可以控制由病原体特异性因素引起的变异。此外,本发明还提供了一种方法,
通过研究所有S.金黄色葡萄球菌菌血症,而不仅仅是那些
脓毒症,我们可以理解适当的宿主反应以及不适当的宿主
脓毒症发展的特征性反应。我们从S.
我们将分析金黄色葡萄球菌菌血症患者的细胞mRNA转录物和血浆
蛋白质/细胞因子水平,在不同时间点从每个患者收集。我们将
联合收割机将这些分析的结果与EMR中发现的临床数据相结合,以提供相关性
宿主反应的生物学和临床表现之间的联系。我们的每例患者
然后,数据将具有前所未有的粒度,我们可以使用它来应用机器学习
技术,以确定预测结果(如死亡率)的多方面内型。一旦我们
我们已经建立了这些内型模型,我们将使用新收集的试点数据来验证它们。
入选的患者中,金黄色葡萄球菌E.大肠杆菌菌血症。这种方法将允许
我们要确定所有感染中宿主反应失调的共同因素,以及
这些可能是特定于感染类型的。了解两者
适当和不适当的宿主对感染的反应,并了解
宿主反应的某些方面是病原体特异性的(而某些方面不是),
针对这种毁灭性疾病的新型疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip A Verhoef其他文献
COVID-19 Hospitalization in Hawaiʻi and Patterns of Insurance Coverage, Race and Ethnicity, and Vaccination
夏威夷的 COVID-19 住院治疗以及保险范围、种族和民族以及疫苗接种的模式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:13.8
- 作者:
Brock M Santi;Philip A Verhoef - 通讯作者:
Philip A Verhoef
Philip A Verhoef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip A Verhoef', 18)}}的其他基金
Merging Temporal Changes in Clinical Informatics, Transcriptomics, and Cytokine Profiles to Understand the Host Response to Bacteremia
合并临床信息学、转录组学和细胞因子谱的时间变化,以了解宿主对菌血症的反应
- 批准号:
9807677 - 财政年份:2019
- 资助金额:
$ 7.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant