Site-Specific Correction of Sickle Cell Disease Using Acoustofludic Gene Delivery
使用声流控基因传递对镰状细胞病进行位点特异性校正
基本信息
- 批准号:10023174
- 负责人:
- 金额:$ 3.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2021-06-10
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdultAffectAutoimmune DiseasesAutologousAutologous TransplantationBiological AssayCD34 geneCRISPR/Cas technologyCell LineCell Membrane PermeabilityCell TherapyCell membraneCell modelCell physiologyCellsClinicalClinical ManagementClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexDNA Sequence AlterationDevelopmentDevicesDiseaseElectroporationEngraftmentErythrocytesErythroidFlow CytometryFoundationsFrequenciesGene ClusterGene DeliveryGene-ModifiedGenerationsGenesGoalsHeart DiseasesHematological DiseaseHematopoietic Stem Cell TransplantationHematopoietic stem cellsHemoglobinHemoglobinopathiesHereditary DiseaseHigh Pressure Liquid ChromatographyHuman Cell LineImprove AccessInterventionK-562Lung diseasesMechanicsMediatingMedicalMethodsMicrofluidicsModelingMutationOutputPatientsPeripheral Blood Mononuclear CellPermeabilityPolymerase Chain ReactionProcessProductionPropertyQuality of lifeReactionRecoveryResearchRibonucleoproteinsRiskRunningSickle CellSickle Cell AnemiaSiteStem cell transplantStructureSystemT-LymphocyteTechniquesTechnologyTestingTherapeuticToxic effectTransfectionTranslationsXenograft procedurebasebeta Globinbioinformatics toolcell injuryclinical practiceclinical translationclinically relevantcostdesigngene correctiongene therapygraft vs host diseaseimmunogenicinnovationinsertion/deletion mutationinterdisciplinary collaborationlipofectionmouse modelnew technologynext generation sequencingprocessing speedrepairedstemstem cell populationstem cell therapystem cellstargeted nucleasesuptakevectorvoltage
项目摘要
Project Summary
Sickle cell disease (SCD) is among the most common monogenetic inherited disorders. Clinical
management of SCD is primarily supportive. However, in the most severe cases, the only definitive
curative option for patients suffering from SCD is an allogeneically matched hematopoietic stem cell
transplant. This hemoglobinopathy directly affects the structure and function of hemoglobin, leading to
deficiencies of β-globin chains in the development of functional adult hemoglobin. Furthermore, the
lack of fully matched donors for patients to receive a stem cell transplant runs the risk of adverse
immunogenic reactions, such as auto-immune disorders or graft-versus-host disease. Recent efforts to
address this disease and its clinical sequela have focused on gene therapies based on the
transplantation of autologous gene-modified hematopoietic stem & progenitor cells (HSPC), where a
patient's own cells are corrected and reinfused to enable production of fully functioning erythrocytes.
However, non-viral strategies for the batch processing of stem cell gene therapies are known to be
inefficient and are unable to meet clinical demands. We hypothesize that the optimization of an
acoustofluidic therapeutic platform that physically permeabilizes cells for the delivery of
CRISPR-Cas9 biomolecules will address this technologic gap. This high-throughput gene-delivery
strategy will enable our long-term goal to generate gene-modified stem cell therapies quickly and
efficiently for curing sickle cell disease. This physical permeabilization process renders target cells
transiently permeable, enabling vector uptake while minimizing damage to the cell membrane and
maintaining high levels of viability. In order to achieve our clinical target, our proposed specific
aims include: 1) optimize acoustofluidic gene delivery in model cell lines harboring the sickle
cell mutation and 2) evaluate site-specific correction of the sickle cell disease mutation in
hematopoietic stem and progenitor cells. Given the utility of this acoustofluidic technology, there is
a wide range of heart, lung, and blood disorders that can be addressed, overcoming the state of the art
for gene delivery. We expect the generation of rapid and safe gene-modified stem cell therapies using
our acoustofludic technology will greatly improve access to these medical interventions and the quality
of life for patients with the most severe cases of SCD.
项目摘要
镰状细胞病(SCD)是最常见的单基因遗传性疾病之一。临床
SCD的管理主要是支持性的。然而,在最严重的情况下,
SCD患者的治疗选择是同种异体匹配的造血干细胞
移植这种血红蛋白病直接影响血红蛋白的结构和功能,导致
功能性成人血红蛋白发育中β-珠蛋白链的缺陷。而且
缺乏完全匹配的供体供患者接受干细胞移植存在不良反应的风险。
免疫原性反应,如自身免疫性疾病或移植物抗宿主病。最近努力
针对这一疾病及其临床后遗症的基因治疗主要是基于
自体基因修饰的造血干细胞和祖细胞(HSPC)移植,其中
患者自身的细胞被校正并重新输注,以能够产生功能齐全的红细胞。
然而,已知用于干细胞基因疗法的批量处理的非病毒策略是可行的。
效率低,不能满足临床需要。我们假设,
声流体治疗平台,其物理地透化细胞以递送
CRISPR-Cas9生物分子将填补这一技术空白。这种高通量的基因传递
该战略将使我们的长期目标能够快速产生基因修饰的干细胞疗法,
有效地治疗镰状细胞病。这种物理透化过程使靶细胞
瞬时渗透,使载体摄取,同时最大限度地减少对细胞膜的损伤,
保持高水平的生存能力。为了达到我们的临床目标,我们提出了具体的
目标包括:1)优化携带镰刀的模型细胞系中的声流体基因递送
细胞突变和2)评估镰状细胞病突变的位点特异性校正,
造血干细胞和祖细胞。考虑到这种声流体技术的实用性,
克服了现有技术水平,可以解决各种心脏、肺和血液疾病
用于基因传递。我们期待着使用基因修饰的干细胞疗法,
我们的声流体技术将大大改善这些医疗干预的可及性,
最严重的SCD患者的生命周期。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Nathaniel Belling其他文献
Jason Nathaniel Belling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3.23万 - 项目类别:
Research Grant














{{item.name}}会员




