A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
基本信息
- 批准号:10059253
- 负责人:
- 金额:$ 30.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAmyloid beta-ProteinAmyloid fibersAwardBindingBudgetsCellsCellular StructuresChemistryChemoreceptorsCodeComplexCytoplasmDNA-Directed RNA PolymeraseDataData ScienceDiffuseDiffusionDiseaseEscherichia coliGoalsHandHealthImageInstructionLabelLawsLearningLiftingLightLinkMalignant NeoplasmsManualsMathematicsMedicalMembraneMethodsModelingMolecular StructureMorphologic artifactsNeurodegenerative DisordersNobel PrizeNoiseOpticsOutcomePhenotypePhotonsPositioning AttributeProcessProteinsPublicationsResolutionSerineStructureTechnologyTimecostimaging capabilitiesin vivoinnovationinsightinstrumentationnovelparticlephysical sciencesingle moleculetoolweb site
项目摘要
Project Summary:
The 2014 Chemistry Nobel Prize was awarded for advances in fluorescent labeling, instrumentation and anal-
ysis methods which together, over the last decade, have resolved particle positions to within ≈20-30 nm.
That is, below the diffraction limit of light used to excite them. Superresolution has subsequently been used
to image β-amyloid fibers tied to neurodegenerative disorders and directly observe diffraction limited protein
clustering linked to cancer phenotypes.
While superresolved localization reveals static cellular structures of immediate relevance to health, it does
not provide direct insight into disease dynamics. Directly observing in vivo dynamics at the single molecule
level demands multi-particle superresolved particle tracking. Superresolved tracking is more difficult than
superresolved localization because – for the same number of photons collected – tracking requires mobile
particles to be localized over multiple image frames. Furthermore, multi-particle superresolved tracking re-
quires that this all be done while accounting for unavoidable overlapping particle trajectories within a confined
cellular volume a few diffraction limited volumes in size. Thus, to date, there is no systematic way to accurately
track more than one protein, of the millions of proteins, inside a volume the size of E. coli’s cytoplasm at once.
The overarching goal is therefore: To provide the first principled multi-particle superresolved track-
ing algorithm by exploiting the novel tools of Bayesian nonparametrics (BNPs) that have already deeply
impacted Data Science over the last decade. BNPs can learn particle numbers in each frame and particle
trajectories across all frames in a computationally tractable manner in a way that is directly informed by the
data (photons collected per pixel). The tracking method developed will be applied to multi-particle problems
– such as the assembly/disassembly of serine chemoreceptor, Tsr, complexes on E. coli’s inner membrane
– and problems involving abrupt dynamical changes – such as transitions between bound/unbound states of
RNA polymerases – naturally dealt with in the principled tracking framework proposed.
Two Specific Aims are proposed. Specific Aim I – Develop the very first, fully-integrated and unsupervised,
superresolved tracking algorithm for multiple diffraction-limited particles under the assumption that particles
diffuse with a single (unknown) diffusion coefficient. Specific Aim II – Repeat Specific Aim 1 for the case
where dynamical models according to which particles evolve are unknown or even changing in time (that is,
the restriction that dynamics be governed by simple diffusion is lifted). Within each Aim, we will: determine
particle numbers in each frame by adapting (nonparametric) Bernoulli processes; adapt observation models to
account for complex label photophysics and aliasing artifacts important for fast-moving particle; treat particle
confinement for particle diffusion in small bacterial cells while learning dynamical models by adapting Dirichlet
processes; incorporate detailed camera noise models.
项目概要:
2014年诺贝尔化学奖被授予在荧光标记,仪器和分析方面的进展。
在过去的十年中,这些方法一起将粒子位置分辨到20-30 nm内。
也就是说,低于用于激发它们的光的衍射极限。超分辨率后来被用于
对与神经退行性疾病相关的β-淀粉样蛋白纤维进行成像,并直接观察衍射限制蛋白
与癌症表型相关的聚类。
虽然超分辨定位揭示了与健康直接相关的静态细胞结构,
不能提供对疾病动力学的直接洞察。直接观察单个分子的体内动力学
水平要求多粒子超分辨粒子跟踪。超分辨跟踪比
因为对于收集的相同数量的光子,跟踪需要移动的
粒子被定位在多个图像帧上。此外,多粒子超分辨跟踪重新,
要求这一切都要做到,同时考虑到不可避免的重叠粒子轨迹内的一个有限的
细胞体积在尺寸上是几个衍射极限体积。因此,到目前为止,还没有系统的方法来准确地
在一个E大小的体积内,追踪数百万蛋白质中的一种以上的蛋白质。coli的细胞质中。
因此,总体目标是:提供第一个原则性的多粒子超分辨轨道-
通过利用贝叶斯非参数化(BNP)的新工具,
在过去的十年里,影响了数据科学。BNP可以学习每帧中的粒子数量,
以计算上易处理的方式,以直接由
数据(每像素收集的光子)。所开发的跟踪方法将应用于多粒子问题
- 如丝氨酸化学感受器Tsr复合物在E.大肠杆菌内膜
- 以及涉及突然的动力学变化的问题--例如,
RNA聚合酶-自然处理的原则跟踪框架提出。
提出了两个具体目标。具体目标I -开发第一个、完全集成且无人监督的,
多衍射极限粒子超分辨跟踪算法
以一个(未知的)扩散系数扩散。具体目标II -针对该病例重复具体目标1
其中粒子演化所依据的动力学模型是未知的或者甚至随时间变化(即,
解除了动力学受简单扩散控制的限制)。在每个目标中,我们将:确定
通过调整(非参数)伯努利过程,调整观测模型,
解释复杂的标签物理学和对快速移动粒子重要的混叠伪影;处理粒子
通过适应Dirichlet学习动力学模型时,小细菌细胞中粒子扩散的确认
过程;包含详细的相机噪声模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Presse其他文献
Steve Presse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Presse', 18)}}的其他基金
Toward high spatiotemporal resolution models of single molecules for in vivo applications
用于体内应用的单分子高时空分辨率模型
- 批准号:
10552322 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Scalable 3D molecular imaging and data analysis for cell census generation
用于细胞普查生成的可扩展 3D 分子成像和数据分析
- 批准号:
10369885 - 财政年份:2021
- 资助金额:
$ 30.16万 - 项目类别:
Theoretical Models of Single Molecule Dynamics from Minimal Photon Numbers
最小光子数的单分子动力学理论模型
- 批准号:
10244940 - 财政年份:2019
- 资助金额:
$ 30.16万 - 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:
10294246 - 财政年份:2019
- 资助金额:
$ 30.16万 - 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
- 批准号:
10524774 - 财政年份:2019
- 资助金额:
$ 30.16万 - 项目类别:
Theoretical Models of Single Molecule Dynamics from Minimal Photon Numbers
最小光子数的单分子动力学理论模型
- 批准号:
10483190 - 财政年份:2019
- 资助金额:
$ 30.16万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Research Grant