A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells

贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪

基本信息

  • 批准号:
    10524774
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary: The 2014 Chemistry Nobel Prize was awarded for advances in fluorescent labeling, instrumentation and anal- ysis methods which together, over the last decade, have resolved particle positions to within ≈20-30 nm. That is, below the diffraction limit of light used to excite them. Superresolution has subsequently been used to image β-amyloid fibers tied to neurodegenerative disorders and directly observe diffraction limited protein clustering linked to cancer phenotypes. While superresolved localization reveals static cellular structures of immediate relevance to health, it does not provide direct insight into disease dynamics. Directly observing in vivo dynamics at the single molecule level demands multi-particle superresolved particle tracking. Superresolved tracking is more difficult than superresolved localization because – for the same number of photons collected – tracking requires mobile particles to be localized over multiple image frames. Furthermore, multi-particle superresolved tracking re- quires that this all be done while accounting for unavoidable overlapping particle trajectories within a confined cellular volume a few diffraction limited volumes in size. Thus, to date, there is no systematic way to accurately track more than one protein, of the millions of proteins, inside a volume the size of E. coli’s cytoplasm at once. The overarching goal is therefore: To provide the first principled multi-particle superresolved track- ing algorithm by exploiting the novel tools of Bayesian nonparametrics (BNPs) that have already deeply impacted Data Science over the last decade. BNPs can learn particle numbers in each frame and particle trajectories across all frames in a computationally tractable manner in a way that is directly informed by the data (photons collected per pixel). The tracking method developed will be applied to multi-particle problems – such as the assembly/disassembly of serine chemoreceptor, Tsr, complexes on E. coli’s inner membrane – and problems involving abrupt dynamical changes – such as transitions between bound/unbound states of RNA polymerases – naturally dealt with in the principled tracking framework proposed. Two Specific Aims are proposed. Specific Aim I – Develop the very first, fully-integrated and unsupervised, superresolved tracking algorithm for multiple diffraction-limited particles under the assumption that particles diffuse with a single (unknown) diffusion coefficient. Specific Aim II – Repeat Specific Aim 1 for the case where dynamical models according to which particles evolve are unknown or even changing in time (that is, the restriction that dynamics be governed by simple diffusion is lifted). Within each Aim, we will: determine particle numbers in each frame by adapting (nonparametric) Bernoulli processes; adapt observation models to account for complex label photophysics and aliasing artifacts important for fast-moving particle; treat particle confinement for particle diffusion in small bacterial cells while learning dynamical models by adapting Dirichlet processes; incorporate detailed camera noise models.
项目概要: 2014 年诺贝尔化学奖因荧光标记、仪器和分析方面的进步而被授予 在过去的十年中,这些方法共同将粒子位置解析到了约 20-30 nm 范围内。 也就是说,低于用于激发它们的光的衍射极限。随后使用了超分辨率 对与神经退行性疾病相关的 β-淀粉样纤维进行成像并直接观察衍射限制蛋白 与癌症表型相关的聚类。 虽然超分辨率定位揭示了与健康直接相关的静态细胞结构,但它确实 不能直接洞察疾病动态。直接观察单分子体内动力学 级别需要多粒子超分辨率粒子跟踪。超分辨跟踪比跟踪更困难 超分辨率定位,因为对于收集的相同数量的光子来说,跟踪需要移动设备 粒子被定位在多个图像帧上。此外,多粒子超分辨跟踪重新 要求在完成这一切的同时考虑有限范围内不可避免的重叠粒子轨迹 细胞体积的尺寸受到一些衍射限制体积的影响。因此,迄今为止,还没有系统的方法可以准确地 在大肠杆菌细胞质大小的体积内同时追踪数百万种蛋白质中的不止一种蛋白质。 因此,总体目标是:提供第一个有原则的多粒子超分辨轨迹 通过利用贝叶斯非参数(BNP)的新颖工具来计算算法,这些工具已经深入人心 过去十年影响了数据科学。 BNP 可以学习每帧和粒子中的粒子数 以一种可计算处理的方式跨所有帧的轨迹,直接由 数据(每个像素收集的光子)。开发的跟踪方法将应用于多粒子问题 – 例如大肠杆菌内膜上丝氨酸化学感受器、Tsr、复合物的组装/拆卸 – 以及涉及突然动态变化的问题 – 例如束缚/非束缚状态之间的转变 RNA聚合酶——自然地在提出的原则性跟踪框架中处理。 提出了两个具体目标。具体目标 I – 开发第一个、完全集成且无监督的、 多个衍射极限粒子的超分辨跟踪算法,假设粒子 以单一(未知)扩散系数进行扩散。具体目标 II – 针对案例重复具体目标 1 其中粒子演化的动力学模型是未知的,甚至会随时间变化(即, 取消了由简单扩散控制动力学的限制)。在每个目标中,我们将: 确定 通过调整(非参数)伯努利过程,每帧中的粒子数;调整观察模型 考虑对快速移动粒子很重要的复杂标签光物理和混叠伪影;处理颗粒 限制小细菌细胞中的颗粒扩散,同时通过适应狄利克雷学习动力学模型 流程;包含详细的相机噪声模型。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct photon-by-photon analysis of time-resolved pulsed excitation data using Bayesian nonparametrics
使用贝叶斯非参数对时间分辨脉冲激发数据进行直接逐光子分析
  • DOI:
    10.1016/j.xcrp.2020.100234
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Meysam Tavakoli;Sina Jazani;Ioannis Sgouralis;Wooseok Heo;Kunihiko Ishii;Tahei Tahara;and Steve Presse
  • 通讯作者:
    and Steve Presse
Single-Molecule Reaction-Diffusion.
单分子反应扩散。
  • DOI:
    10.1101/2023.09.05.556378
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu徐伟青,LanceWQ;Jazani,Sina;Kilic,Zeliha;Pressé,Steve
  • 通讯作者:
    Pressé,Steve
BNP-Track: A framework for superresolved tracking.
BNP-Track:超分辨率跟踪框架。
  • DOI:
    10.1101/2023.04.03.535459
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sgouralis,Ioannis;Xu徐伟青,LanceWQ;Jalihal,AmeyaP;Walter,NilsG;Pressé,Steve
  • 通讯作者:
    Pressé,Steve
Monte Carlo samplers for efficient network inference.
  • DOI:
    10.1371/journal.pcbi.1011256
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
  • 通讯作者:
Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
使用贝叶斯非参数分析一次一个光子进行单焦点共焦数据分析。
  • DOI:
    10.1103/physrevx.10.011021
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tavakoli,Meysam;Jazani,Sina;Sgouralis,Ioannis;Shafraz,OmerM;Sivasankar,Sanjeevi;Donaphon,Bryan;Levitus,Marcia;Pressé,Steve
  • 通讯作者:
    Pressé,Steve
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Presse其他文献

Steve Presse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Presse', 18)}}的其他基金

Toward high spatiotemporal resolution models of single molecules for in vivo applications
用于体内应用的单分子高时空分辨率模型
  • 批准号:
    10552322
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
Scalable 3D molecular imaging and data analysis for cell census generation
用于细胞普查生成的可扩展 3D 分子成像和数据分析
  • 批准号:
    10369885
  • 财政年份:
    2021
  • 资助金额:
    $ 29.96万
  • 项目类别:
Theoretical Models of Single Molecule Dynamics from Minimal Photon Numbers
最小光子数的单分子动力学理论模型
  • 批准号:
    10244940
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
  • 批准号:
    10294246
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
  • 批准号:
    10059253
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:
Theoretical Models of Single Molecule Dynamics from Minimal Photon Numbers
最小光子数的单分子动力学理论模型
  • 批准号:
    10483190
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:

相似海外基金

Development of prevention of Alzheimer's disease using transgenic soybean expressing amyloid beta protein
使用表达β淀粉样蛋白的转基因大豆预防阿尔茨海默病的进展
  • 批准号:
    19K07989
  • 财政年份:
    2019
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Dynamics of surfactant - amyloid-beta protein interactions during self-assembly
合作研究:自组装过程中表面活性剂 - 淀粉样蛋白 - β 蛋白相互作用的动力学
  • 批准号:
    1802641
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of surfactant - amyloid-beta protein interactions during self-assembly
合作研究:自组装过程中表面活性剂 - 淀粉样蛋白 - β 蛋白相互作用的动力学
  • 批准号:
    1802588
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of surfactant - amyloid beta protein interactions during self-assembly
合作研究:自组装过程中表面活性剂-淀粉样β蛋白相互作用的动力学
  • 批准号:
    1802793
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant
Analysis of a new mechanism to specifically inhibit amyloid-beta protein production
特异性抑制β-淀粉样蛋白产生的新机制分析
  • 批准号:
    18K14883
  • 财政年份:
    2018
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Aggregation of amyloid-beta protein on size-controlled lipid nanoparticles
淀粉样β蛋白在尺寸控制的脂质纳米颗粒上的聚集
  • 批准号:
    16K18860
  • 财政年份:
    2016
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Structure and molecular interactions in aggregation of amyloid beta protein
β淀粉样蛋白聚集的结构和分子相互作用
  • 批准号:
    26860020
  • 财政年份:
    2014
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A novel therapeutic strategy for Alzheimer's disease based on the promotion of clearance mechanism of amyloid beta protein
基于促进β淀粉样蛋白清除机制的阿尔茨海默病新治疗策略
  • 批准号:
    26670126
  • 财政年份:
    2014
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Amyloid Beta-Protein: Wild Type and Familial Mutant Assembly and Inhibition
β-淀粉样蛋白:野生型和家族突变体的组装和抑制
  • 批准号:
    8728102
  • 财政年份:
    2013
  • 资助金额:
    $ 29.96万
  • 项目类别:
Amyloid Beta-Protein: Wild Type and Familial Mutant Assembly and Inhibition
β-淀粉样蛋白:野生型和家族突变体的组装和抑制
  • 批准号:
    9110110
  • 财政年份:
    2013
  • 资助金额:
    $ 29.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了