The Function of EGFL6 in Ovarian Cancer Cell Biology, Tumor Initiation, and Therapy

EGFL6 在卵巢癌细胞生物学、肿瘤发生和治疗中的功能

基本信息

项目摘要

ABSTRACT: Ovarian cancer is a deadly disease with the 3rd-highest mortality:incidence ratio of all cancers. High-grade serous cancer (HGSC) is the most aggressive ovarian cancer subtype for which we have seen only little or no improvement in patient survival. Thus there is a clear unmet need to identify and develop new therapeutic targets in HGSC. We recently showed that the stem cell regulatory factor EGFL6 is a critical regulator of ALDH+ HGSC cancer stem-like cells (CSC), cells associated with therapeutic resistance. EGFL6 promotes the migration and asymmetric division of ALDH+HGSC CSC, while EGFL6 knockdown in HGSC cancer cells leads to loss of stemness and dramatically reduced tumor growth in mice. We therefore hypothesize that EGFL6 is a promising therapeutic target for HGSC. Understanding the therapeutic potential EGFL6-directed agents will require greater understanding of EGFL6's roles in ovarian cancer cell biology. The EGFL6 receptor on cancer cells is unknown. As disruption of ligand/receptor signaling has proven a very effective therapeutic mechanism in other pathways, we propose SA1: To Identify the EGFL6 receptor and characterize the EGFL6 signaling complex. In addition to regulating HGSC CSC, EGFL6 is an important regulator of normal stem cells. Mutated normal stem cells are a proposed source of cancer initiating cells. We hypothesize EGFL6 as a regulator of both normal stem cells and HGSC CSC may be essential for ovarian cancer initiation and growth. We therefore propose SA2: To evaluate the role of EGFL6 in cancer initiation. We will use a novel genetic mouse model of HGSC to assess (i) the impact of EGFL6 knockout or (ii) the effect of EGFL6 neutralizing antibodies on HGSC initiation and growth. We have shown that the murine EGFL6 neutralizing antibody we developed has excellent therapeutic activity versus human cancer cell lines in mice. To translate these studies into clinical trials we developed a a panel of humanized EGFL6-blocking antibodies (hEGFL6-Ab). We propose SA3: To validate hEGFL6-Ab and determine if EGFL6 expression by patients' tumors predicts response to anti-EGFL6 therapy. Using in vitro assays and a novel humanized stroma- patient derived xenograft model we will identify the most effective hEGFL6-Ab. We hypothesize that patients whose tumor cells express EGFL6 and/or exhibit EGFL6 pathway activation will be most responsive to such therapy. Using expression analysis of hEGFL6-Ab responsive and non-responsive tumors, we propose to generate an algorithm to predict patients' responses to anti-EGFL6 therapy. IMPACT: These studies will 1) define the EGFL6 signaling cascade in ovarian cancer cells, 2) define requirements for cancer cell EGFL6 expression in HGSC initiation and growth, and 3) create and validate a novel humanized anti-EGFL6-Ab and an accompanying algorithm that identifies/stratifies patients who are most apt to respond to such therapy. Ultimately, the project will produce a promising therapeutic agent positioned for first-in-human clinical trials in ovarian cancer.
摘要:卵巢癌是一种致死性疾病,死亡率:发病率在所有癌症中排名第3。 高级别浆液性癌(HGSC)是最具侵袭性的卵巢癌亚型, 患者生存率几乎没有改善。因此,在确定和开发新的 HGSC中的治疗靶点。我们最近发现,干细胞调节因子EGFL 6是一个关键的, ALDH+ HGSC癌症干细胞样细胞(CSC)的调节因子,与治疗抗性相关的细胞。EGFL6 促进ALDH+HGSC CSC的迁移和不对称分裂,而EGFL 6敲低HGSC 癌细胞导致小鼠的干性丧失并显著降低肿瘤生长。因此我们 假设EGFL 6是HGSC有希望治疗靶点。了解治疗潜力 EGFL 6导向剂需要更深入地了解EGFL 6在卵巢癌细胞生物学中的作用。的 癌细胞上的EGFL 6受体是未知的。由于配体/受体信号传导的中断已被证明是一个非常 在其他途径的有效治疗机制,我们提出SA 1:确定EGFL 6受体, 表征EGFL 6信号传导复合物。除了调节HGSC CSC,EGFL 6是一个重要的调节因子。 正常干细胞的调节器。突变的正常干细胞被认为是癌症起始细胞的来源。我们 假设EGFL 6作为正常干细胞和HGSC CSC调节剂可能是卵巢癌所必需的, 癌症的发生和发展。因此,我们提出SA 2:评估EGFL 6在癌症发生中的作用。 我们将使用一种新的HGSC遗传小鼠模型来评估(i)EGFL 6敲除的影响或(ii)EGFL 6基因敲除对HGSC的影响。 EGFL 6中和抗体对HGSC启动和生长的影响。我们已经证明,小鼠EGFL 6 我们开发的中和抗体在小鼠中对人癌细胞系具有优异的治疗活性。 为了将这些研究转化为临床试验,我们开发了一组人源化EGFL 6阻断抗体, (hEGFL6-Ab)。我们建议SA 3:验证hEGFL 6-Ab,并确定患者的EGFL 6表达是否与患者的免疫反应有关。 肿瘤预测对抗EGFL 6治疗的反应。使用体外试验和新型人源化基质- 在患者来源的异种移植模型中,我们将鉴定最有效的hEGFL 6-Ab。我们假设病人 其肿瘤细胞表达EGFL 6和/或表现出EGFL 6途径活化的人将对这种治疗最有反应。 疗法通过对hEGFL 6-Ab应答和非应答肿瘤的表达分析,我们提出, 生成一个算法来预测患者对抗EGFL 6治疗的反应。 影响:这些研究将1)定义卵巢癌细胞中的EGFL 6信号级联,2)定义 HGSC起始和生长中癌细胞EGFL 6表达的要求,以及3)创建并验证 一种新的人源化抗EGFL 6-Ab和伴随的识别/分层患者的算法, 最容易对这种疗法产生反应。最终,该项目将产生一种有前途的治疗剂 用于卵巢癌的首次人体临床试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald J Buckanovich其他文献

Ronald J Buckanovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronald J Buckanovich', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10713051
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
Project 3: Hedgehog Inhibition to Enhance Response to ICI Therapy
项目 3:Hedgehog 抑制增强 ICI 治疗反应
  • 批准号:
    10713054
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
HCC Ovarian Cancer SPORE
HCC 卵巢癌孢子
  • 批准号:
    10713050
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
Evaluating unique aspects of quiescent ovarian cancer cell biology for therapeutic targets
评估静息卵巢癌细胞生物学的独特方面以寻找治疗靶点
  • 批准号:
    10750118
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
Defining the impact of stromal aging on ovarian cancer initiation
定义基质老化对卵巢癌发生的影响
  • 批准号:
    10353485
  • 财政年份:
    2021
  • 资助金额:
    $ 34.35万
  • 项目类别:
Defining the impact of stromal aging on ovarian cancer initiation
定义基质老化对卵巢癌发生的影响
  • 批准号:
    10491889
  • 财政年份:
    2021
  • 资助金额:
    $ 34.35万
  • 项目类别:
Defining the impact of stromal aging on ovarian cancer initiation
定义基质老化对卵巢癌发生的影响
  • 批准号:
    10659225
  • 财政年份:
    2021
  • 资助金额:
    $ 34.35万
  • 项目类别:
ALDH Inhibition as Modulator of Tumor Immunobiology
ALDH 抑制作为肿瘤免疫生物学的调节剂
  • 批准号:
    10392913
  • 财政年份:
    2020
  • 资助金额:
    $ 34.35万
  • 项目类别:
ALDH Inhibition as Modulator of Tumor Immunobiology
ALDH 抑制作为肿瘤免疫生物学的调节剂
  • 批准号:
    10380368
  • 财政年份:
    2020
  • 资助金额:
    $ 34.35万
  • 项目类别:
ALDH Inhibition as Modulator of Tumor Immunobiology
ALDH 抑制作为肿瘤免疫生物学的调节剂
  • 批准号:
    10524133
  • 财政年份:
    2020
  • 资助金额:
    $ 34.35万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了