Synaptic signals that drive the long-term maintenance of homeostatic neuroplasticity
驱动长期维持稳态神经可塑性的突触信号
基本信息
- 批准号:10059270
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAtaxiaBiochemistryBiological AssayBiological ModelsCalciumCalcium ChannelCell Adhesion MoleculesCell Signaling ProcessChronicChronic DiseaseDevelopmentDiseaseDissectionDrosophila genusDrosophila melanogasterElectrophysiology (science)EpilepsyEventFeedbackFibroblast Growth FactorFibroblast Growth Factor ReceptorsGTP-Binding ProteinsGeneticGenetic ModelsGenetic ScreeningGlutamate ReceptorGlutamatesGoalsGrowthHealthHomeostasisHomologous GeneHumanImageImpairmentKnowledgeLeadLifeLigandsLightMaintenanceMediatingMetabotropic Glutamate ReceptorsMigraineModelingMolecularMolecular AnalysisMolecular GeneticsMuscleMyastheniaNCAM1 geneNerveNeural Cell Adhesion MoleculesNeuromuscular JunctionNeuronal PlasticityNeuronsOutcomeOutputPathway interactionsPharmacologyPhospholipasePhysiologicalPhysiologyProcessProtein Tyrosine KinaseProteinsProxyResearchResearch DesignShapesSignal PathwaySignal TransductionSignaling MoleculeSirolimusSynapsesSynaptic plasticitySystemTestingTimeTissuesToxinVesicleWorkbasebiological adaptation to stresseffective therapyfasciclin IIflexibilityimprovedinsightintercellular communicationnervous system disorderneuronal growthneurotransmissionnovelphospholipase C betapostsynapticpresynapticprogramsprotein-tyrosine kinase c-srcquantumresponsestressorsynaptic functiontherapy developmenttool
项目摘要
PROJECT SUMMARY
Background and Objectives: Synapses and circuits possess a robust capacity for stress response.
They employ homeostatic regulatory mechanisms to maintain physiologically appropriate levels of
synaptic output. Improved knowledge about homeostatic forms of synaptic plasticity should lead to a
better understanding of neurological disorders that occur when synapse stability is lost. Using genetic
and electrophysiological approaches at the model Drosophila neuromuscular junction (NMJ) synapse,
three new factors required for the long-term homeostatic maintenance of NMJ function were uncov-
ered: two tyrosine kinase signaling molecules residing in the muscle and one phospholipase C-β
(PLCβ) molecule residing in the neuron. The objective of this proposal is to understand how these
three molecules integrate cell-cell signaling processes to maintain synapse stability throughout life.
Specific Aims and Research Design: This project has three specific aims. The first two aims will
delineate how each respective tyrosine kinase drives a muscle-to-nerve signaling process to stabilize
synaptic activity over long periods of developmental time. The third aim will address how neuronal
PLCβ integrates cell-cell signals at the synapse to autonomously control neuronal output. Each aim
will combine electrophysiology, genetics, pharmacology, biochemistry, and synapse imaging. A prima-
ry assay for each aim will be to challenge NMJ function – usually by inhibiting glutamate receptors in
the muscle – and then to examine the NMJ by electrophysiology to check if it appropriately responds
to that challenge by releasing more glutamate from the neuron. By combining this electrophysiological
approach with synapse imaging it will be possible to identify manipulations that specifically impair
synapse function – as opposed to other parameters, like synapse growth. The expected outcome is a
detailed model of how synaptic tissues transmit cell-cell signals to maintain stable activity levels.
Health Relatedness: Neurological disorders like epilepsy, ataxia, and migraine are associated with
unstable neuronal function. Therefore, understanding how synapses work to maintain stability on a
molecular level could have profound implications for disorders with underlying neuronal instabilities.
Yet the cell-cell signaling events that tightly control levels of synaptic output are poorly understood.
The genetically tractable Drosophila NMJ employs homoestatic strategies to stabilize synapse
function – such as altering levels of presynaptic calcium influx – that are shared by mammalian central
synapses. Taking advantage of the molecular and genetic tools offered by the NMJ promises to shed
light on universally conserved mechanisms of how synapses maintain stable function throughout life.
项目总结
背景和目的:突触和回路具有强大的应激反应能力。
他们利用体内平衡调节机制来维持生理上适当的水平
突触输出。对突触可塑性的稳态形式的更好的了解应该会导致
更好地了解当突触失去稳定性时发生的神经障碍。使用遗传
以及模型果蝇神经肌肉接头(NMJ)突触的电生理方法,
揭示了长期维持NMJ功能内稳所需的三个新因素。
ERD:两个位于肌肉中的酪氨酸激酶信号分子和一个磷脂酶C-β
(PLCβ)分子驻留在神经元中。这项建议的目标是了解这些
三个分子整合了细胞间的信号传递过程,以在整个生命过程中保持突触的稳定性。
具体目标和研究设计:本项目有三个具体目标。前两个目标将
描绘了每个相应的酪氨酸激酶如何驱动肌肉到神经的信号传递过程以稳定
长时间发育过程中的突触活动。第三个目标将解决神经元如何
可编程控制器β在突触处整合细胞-细胞信号,以自主控制神经元输出。每个目标
将结合电生理学、遗传学、药理学、生物化学和突触成像。一等奖-
每个目标的RY测试都将挑战NMJ的功能-通常是通过抑制谷氨酸受体
肌肉--然后通过电生理检查NMJ,检查它是否有适当的反应
通过从神经元释放更多的谷氨酸来应对这一挑战。通过结合这种电生理学
通过突触成像的方法,将有可能识别特定损伤的操作
突触功能--与突触生长等其他参数相反。预期的结果是
突触组织如何传递细胞-细胞信号以维持稳定的活动水平的详细模型。
与健康相关:癫痫、共济失调和偏头痛等神经疾病与
神经功能不稳定。因此,了解突触如何工作以维持脑部
分子水平可能对具有潜在神经元不稳定性的疾病有深远的影响。
然而,严格控制突触输出水平的细胞-细胞信号事件却知之甚少。
遗传上易驯化的果蝇NMJ使用同位策略来稳定突触
哺乳动物中枢共享的功能,如改变突触前钙内流的水平
突触。利用NMJ提供的分子和遗传工具有望摆脱
关于突触如何在整个生命中保持稳定功能的普遍保守的机制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Precise mapping of one classic and three novel GluRIIA mutants in Drosophila melanogaster.
- DOI:10.17912/micropub.biology.000784
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mallik, Bhagaban;Brusich, Douglas J;Heyrman, Georgette;Frank, C Andrew
- 通讯作者:Frank, C Andrew
Roles for Mitochondrial Complex I Subunits in Regulating Synaptic Transmission and Growth.
- DOI:10.3389/fnins.2022.846425
- 发表时间:2022
- 期刊:
- 影响因子:4.3
- 作者:Mallik, Bhagaban;Frank, C. Andrew
- 通讯作者:Frank, C. Andrew
The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction.
- DOI:10.3389/fnsyn.2022.1033743
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Armstrong, Noah S.;Frank, C. Andrew
- 通讯作者:Frank, C. Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARL ANDREW FRANK其他文献
CARL ANDREW FRANK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARL ANDREW FRANK', 18)}}的其他基金
How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
- 批准号:
10706581 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
- 批准号:
10568507 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Synaptic signals that drive the long-term maintenance of homeostatic neuroplasticity
驱动长期维持稳态神经可塑性的突触信号
- 批准号:
10088612 - 财政年份:2016
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
7509540 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8231539 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8012026 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
7652330 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8032421 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
Identifying genes that maintain stable neural activity
识别维持稳定神经活动的基因
- 批准号:
7115022 - 财政年份:2004
- 资助金额:
$ 33.45万 - 项目类别:
Identifying genes that maintain stable neural activity
识别维持稳定神经活动的基因
- 批准号:
6946808 - 财政年份:2004
- 资助金额:
$ 33.45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Research Grant