Chaperone-Assisted RNA Crystallography
分子伴侣辅助 RNA 晶体学
基本信息
- 批准号:10058842
- 负责人:
- 金额:$ 38.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAffinityAmino AcidsAntibodiesAntibody FormationAntigensArchitectureBacteriophagesBindingBiological ProcessCellular biologyChemistryComplexCrystallizationCrystallographyDevelopmentDiseaseEntropyEvolutionFundingGene ExpressionGoalsHealthHumanImmunoglobulin FragmentsImmunologicsKnowledgeLaboratoriesLibrariesMacromolecular ComplexesMeasuresMediatingMethodsModelingMolecularMolecular ChaperonesMolecular ConformationMolecular EvolutionPerformancePhage DisplayPlayPopulationProbabilityProcessPropertyProteinsRNARNA BindingRNA FoldingRNA Recognition MotifRNA-Binding ProteinsRapid screeningReactionReagentResearchResolutionRibonucleoproteinsRoleScientistSpecificityStructural BiologistStructureSurfaceT7 RNA polymeraseTechniquesTechnologyTestingVariantWorkX-Ray Crystallographyantibody engineeringbiological systemsflexibilityimprovedinorganic phosphateinsightmacromoleculenext generationnovelportabilityprotein complexstructural biologysynthetic antibodiessynthetic biologythree dimensional structuretranscriptome
项目摘要
PROJECT SUMMARY
Biological systems possess a highly complex and dynamic cellular RNA population, collectively known as the
transcriptome. Many RNAs fold into complex three-dimensional structures, both intrinsically and as
ribonucleoprotein (RNP) complexes, and play fundamental roles in nearly every aspect of gene expression.
Understanding cell biology, health, and disease requires knowledge of how RNA structure mediates biological
function. X-ray crystallography provides a powerful method for structure determination, but RNA
crystallization represents a major bottleneck in the process, reflecting in part the limited surface chemistry for
mediating lattice interactions and repulsion among the phosphates. Considering the rapid pace of new RNA
discovery, there remains an acute need to develop methods to facilitate RNA structure acquisition. For difficult
protein targets, antibody fragments (Fab or scFv) have served as effective chaperones for crystallization, and
we hypothesized that the large size, conformational properties and surface chemistry of Fabs will facilitate
RNA crystallization as well. Using phage-display library selections we demonstrated that Fabs can bind RNA
with high affinity and specificity, mediate the majority of lattice interactions in Fab-RNA co-crystals, and
provide a molecular replacement model for solving the structures. The long-term goal of this project is to
facilitate resolution of the RNA crystallization bottleneck through development of a high-throughput pipeline
for antibody production against RNA. The objective of this application is to enable facile access to RNA-
binding Fabs and pursue them as reagents for RNA and RNP crystallization and structure determination. To
attain this objective we will (a) improve Fab libraries using phage display and molecular evolution approaches
to identify amino acid types that tailor complementary determining regions (CDRs) for RNA binding, (b)
develop general use crystallization modules with surface and conformational properties adjusted to facilitate
crystallization, and (c) use these techniques to create and use Fab complexes of RNA and RNP targets for
crystallization and structure determination. Completion of the research will allow facile access to RNA binding
Fabs, provide structural biologists with a suite of portable modules for generalized use in RNA/RNP
crystallization, and provide important new structural knowledge for understanding biological function.
项目总结
生物系统拥有高度复杂和动态的细胞RNA种群,统称为
转录组。许多RNA折叠成复杂的三维结构,既有内在的也有AS的
核糖核蛋白(RNP)复合体,在基因表达的几乎每一个方面都发挥着重要的作用。
要了解细胞生物学、健康和疾病,需要了解RNA结构如何调节生物
功能。X射线结晶学为确定结构提供了强有力的方法,但RNA
结晶是这一过程中的一个主要瓶颈,这在一定程度上反映了
调节磷酸盐之间的晶格相互作用和排斥力。考虑到新RNA的快速发展
尽管发现了RNA结构,但仍然迫切需要开发促进RNA结构获取的方法。对于困难的人
蛋白质靶标、抗体片段(Fab或ScFv)被用作结晶的有效伴侣,以及
我们假设,Fabs的大尺寸、构象特性和表面化学将有助于
RNA结晶也是如此。通过噬菌体展示文库的选择,我们证明了Fabs可以与RNA结合
具有高亲和力和特异性,介导了Fab-RNA共晶体中的大部分晶格相互作用,以及
提出了解决结构问题的分子置换模型。这个项目的长期目标是
通过开发高通量管道来促进RNA结晶瓶颈的解决
用于产生针对RNA的抗体。该应用程序的目标是能够方便地访问RNA-
结合Fabs,并将其作为RNA和RNP结晶和结构确定的试剂。至
为了实现这一目标,我们将(A)利用噬菌体展示和分子进化方法来改进Fab文库
确定为RNA结合量身定做互补决定区(CDR)的氨基酸类型,(B)
开发表面和构象属性可调整的通用结晶模块,以便于
结晶,以及(C)使用这些技术来创建和使用RNA和RNP靶标的Fab复合体
结晶和结构测定。这项研究的完成将使人们能够方便地获得RNA结合
FABS为结构生物学家提供了一套可广泛用于RNA/RNP的便携式模块
结晶,为理解生物功能提供了重要的新的结构知识。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spinach RNA aptamer detects lead(II) with high selectivity.
- DOI:10.1039/c5cc01526j
- 发表时间:2015-05-28
- 期刊:
- 影响因子:0
- 作者:DasGupta S;Shelke SA;Li NS;Piccirilli JA
- 通讯作者:Piccirilli JA
Structural Basis for Fluorescence Activation by Pepper RNA.
- DOI:10.1021/acschembio.2c00290
- 发表时间:2022-07-15
- 期刊:
- 影响因子:4
- 作者:Rees, Huw C.;Gogacz, Wojciech;Li, Nan-Sheng;Koirala, Deepak;Piccirilli, Joseph A.
- 通讯作者:Piccirilli, Joseph A.
Synthesizing topological structures containing RNA.
- DOI:10.1038/ncomms14936
- 发表时间:2017-03-31
- 期刊:
- 影响因子:16.6
- 作者:Liu D;Shao Y;Chen G;Tse-Dinh YC;Piccirilli JA;Weizmann Y
- 通讯作者:Weizmann Y
Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif.
- DOI:10.1038/s41467-018-06942-3
- 发表时间:2018-10-31
- 期刊:
- 影响因子:16.6
- 作者:Shelke SA;Shao Y;Laski A;Koirala D;Weissman BP;Fuller JR;Tan X;Constantin TP;Waggoner AS;Bruchez MP;Armitage BA;Piccirilli JA
- 通讯作者:Piccirilli JA
Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures
- DOI:10.1038/s41557-019-0406-7
- 发表时间:2020-01-20
- 期刊:
- 影响因子:21.8
- 作者:Liu, Di;Geary, Cody W.;Weizmann, Yossi
- 通讯作者:Weizmann, Yossi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Anthony Piccirilli其他文献
Joseph Anthony Piccirilli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Anthony Piccirilli', 18)}}的其他基金
The VS Ribozyme: Catalytic Mechanism, Transition State Structure, and Evolution
VS 核酶:催化机制、过渡态结构和进化
- 批准号:
10305610 - 财政年份:2019
- 资助金额:
$ 38.04万 - 项目类别:
The VS Ribozyme: Catalytic Mechanism, Transition State Structure, and Evolution
VS 核酶:催化机制、过渡态结构和进化
- 批准号:
10582360 - 财政年份:2019
- 资助金额:
$ 38.04万 - 项目类别:
The VS Ribozyme: Catalytic Mechanism, Transition State Structure, and Evolution
VS 核酶:催化机制、过渡态结构和进化
- 批准号:
10061618 - 财政年份:2019
- 资助金额:
$ 38.04万 - 项目类别:
CHAPERONE-ASSISTED RNA CRYSTALLOGRAPHY - Resubmission 01
伴侣辅助 RNA 晶体学 - 重新提交 01
- 批准号:
8506004 - 财政年份:2013
- 资助金额:
$ 38.04万 - 项目类别:
CHAPERONE-ASSISTED RNA CRYSTALLOGRAPHY - Resubmission 01
伴侣辅助 RNA 晶体学 - 重新提交 01
- 批准号:
9037690 - 财政年份:2013
- 资助金额:
$ 38.04万 - 项目类别:
CHAPERONE-ASSISTED RNA CRYSTALLOGRAPHY - Resubmission 01
伴侣辅助 RNA 晶体学 - 重新提交 01
- 批准号:
8643797 - 财政年份:2013
- 资助金额:
$ 38.04万 - 项目类别:
Chaperone-Assisted RNA Crystallography-Equipment Supplement
分子伴侣辅助 RNA 晶体学设备补充品
- 批准号:
9895189 - 财政年份:2013
- 资助金额:
$ 38.04万 - 项目类别:
The Catalytic Mechanism of Nuclear Premessenger RNA Splicing by the Spliceosome
剪接体对核前信使RNA剪接的催化机制
- 批准号:
8788330 - 财政年份:2010
- 资助金额:
$ 38.04万 - 项目类别:
Investigating the Catalytic Mechanism of the HDV Ribozyme
HDV 核酶催化机制的研究
- 批准号:
8465171 - 财政年份:2010
- 资助金额:
$ 38.04万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Standard Grant