Ribosomal perturbation as a mechanism to prevent misfolding of CFTR
核糖体扰动作为防止 CFTR 错误折叠的机制
基本信息
- 批准号:10063541
- 负责人:
- 金额:$ 55.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-15 至 2022-01-07
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAmino AcidsAreaBiochemicalBiochemistryBiogenesisBiological AssayBirthCaucasiansCell surfaceCellsClinicalCodeCodon NucleotidesComplexCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDataDefectDelta F508 mutationDevelopmentDiseaseDisease modelExhibitsGenesGeneticGenetic EpistasisGenetic PolymorphismGoalsHeterogeneityHumanImmunohistochemistryInterventionIntestinesIon TransportKineticsKnowledgeLeadLengthLibrariesLifeMammalian CellMeasurementMediatingMediator of activation proteinMessenger RNAModelingMolecularMolecular ChaperonesMolecular GeneticsMusMutationNew AgentsOther GeneticsPathogenesisPathway interactionsPatientsPeptide Initiation FactorsPeptidesPharmacologyPhenotypePhenylalaninePhysiologyPositioning AttributeProtein ConformationProteinsProteolysisResolutionRibosomal ProteinsRibosomesSaccharomyces cerevisiaeSafetySmall Interfering RNASpeedTestingTissuesTracheaTransfer RNATranslatingTranslationsVariantWorkYeastsairway epitheliumbasebioelectricitycell typecellular targetingclinically significantcold temperatureconditional knockoutcystic fibrosis patientsdisease phenotypedisease-causing mutationefficacy evaluationexperimental studygene productgenome-widehuman diseaseimprovedin vivoinnovationknock-downloss of functionmouse modelmultidisciplinarymutantnovelnovel strategiespersonalized medicinephenomicspreventprotein foldingprotein misfoldingribosome profilingscreeningsynergismtraffickingtranscriptometranscriptomicstranslational impact
项目摘要
Abstract
Cystic Fibrosis (CF) is a common lethal autosomal recessive disorder, occurring in 1 per 2,500 to 3,500 U.S.
births annually. The disease is caused by defects in the CF transmembrane conductance regulator (CFTR).
Mutations that change the CFTR coding sequence alter integrity of peptide folding and lead to disease. In this
project, we show that CFTR codon alterations—including both non-synonymous and synonymous
polymorphisms on background of the common F508del variant—can perturb ribosome dynamics, consequent
mRNA utilization, translational rate, and protein biogenesis. The critical relationship between protein folding
and translational velocity is a topical area with ramifications ranging from basic CFTR trafficking to disease
phenotype and intervention. Mechanistic underpinnings for this application are derived from genome-wide
phenomic screening with the Saccharomyces cerevisiae deletion strain library to identify novel modulators of
F508del CFTR maturation, leading to discovery of specific ribosomal protein modules that impact F508del
CFTR folding. We have established that suppression of Rpl12, along with other 60S proteins comprising the
ribosomal stalk, improve F508del CFTR processing and activity at the mammalian cell surface to levels (in
primary airway epithelia) predicted to confer clinical benefit among CF patients and comparable in magnitude
to lumacaftor, a new agent recently approved for this purpose. Our preliminary data indicate that improved
folding and activity of F508del CFTR are attributable to effects on translational kinetics. We propose three
Specific Aims to develop an innovative model relevant to CF pathogenesis: 1) Define ribosomal domains and
functional pathway interactions that govern ∆F protein biogenesis, and expand the analysis to include other
CFTR variants and complex alleles, 2) Ascertain the mechanism by which Rpl12 suppression rescues F508del
CFTR function, including relevance of translation rate to disease causing CF mutations and other CFTR
polymorphisms, 3) Determine in vivo significance by development of RPL12 conditional knockout or
haplosufficient mice. Our team combines multidisciplinary and mutually reinforcing expertise in CFTR
biochemistry, transport physiology, ribosome profiling, translational velocity, yeast phenomics, and molecular
genetics to mechanistically address a fundamental hypothesis regarding ways the ribosome utilizes mRNA to
influence folding and functional quality of resulting gene products. We will establish translation control as a
novel and critical mediator of Yor1 and CFTR maturation, identify specific ribosome modules that influence the
CFTR biogenesis pathway, and evaluate relevance and safety of repressing this target in a murine disease
model. Such results will improve understanding of CF molecular mechanism, suggest novel approaches for
personalized treatment of CF patients with the most common forms of the disease, and indicate clinical
significance of an important new observation relevant to aberrant protein translation and a fatal genetic illness.
摘要
囊性纤维化(CF)是一种常见的致死性常染色体隐性遗传疾病,在美国每2,500至3,500人中发生1例。
每年出生。这种疾病是由CF跨膜传导调节因子(CFTR)缺陷引起的。
改变CFTR编码序列的突变改变了肽折叠的完整性并导致疾病。在这
项目,我们表明,CFTR密码子的改变,包括非同义和同义
常见的F508del变异体背景上的多态性可以扰乱核糖体动力学,
mRNA利用率、翻译速率和蛋白质生物合成。蛋白质折叠与蛋白质结构之间的关键关系
和翻译速度是一个局部领域的分支,从基本的CFTR运输到疾病
表型和干预。这种应用的机制基础来自全基因组
用酿酒酵母缺失菌株文库进行表型筛选以鉴定新的
F508del CFTR成熟,导致发现影响F508del的特定核糖体蛋白模块
CFTR折叠。我们已经确定Rpl 12的抑制,沿着其他60 S蛋白,其包括:
核糖体柄,提高F508del CFTR加工和活性在哺乳动物细胞表面的水平(在
原发性气道上皮细胞),预计可在CF患者中提供临床获益,且程度相当
最近批准用于这一目的的一种新药剂卢麦卡弗特。我们的初步数据显示,
F508delCFTR的折叠和活性归因于对翻译动力学的影响。我们提出了三
具体目标是开发与CF发病机制相关的创新模型:1)定义核糖体结构域,
功能途径的相互作用,支配BMPF蛋白的生物发生,并扩大分析,包括其他
CFTR变体和复杂等位基因,2)确定Rpl12抑制拯救F508del的机制
CFTR功能,包括翻译率与导致疾病的CF突变和其他CFTR的相关性
3)通过RPL 12条件性敲除的发展确定体内意义,或
haplosufficient小鼠我们的团队结合了CFTR的多学科和相互加强的专业知识
生物化学,运输生理学,核糖体分析,翻译速度,酵母表型组学和分子生物学
遗传学,以机械地解决有关核糖体利用mRNA的方式,
影响所得基因产物的折叠和功能质量。我们将建立翻译控制,
Yor1和CFTR成熟的新的和关键的介质,确定影响细胞增殖的特定核糖体模块。
CFTR生物合成途径,并评估在鼠疾病中抑制该靶点的相关性和安全性
模型这些结果将有助于加深对CF分子机制的理解,为CF的分子生物学研究提供新的途径。
个性化治疗CF患者最常见的疾病形式,并指出临床
一项与异常蛋白质翻译和一种致命遗传疾病有关的重要新观察结果的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN L HARTMAN其他文献
JOHN L HARTMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN L HARTMAN', 18)}}的其他基金
Discovery of novel mechanisms that impact CFTR translation and contribute to cystic fibrosis pathogenesis
发现影响 CFTR 翻译并导致囊性纤维化发病机制的新机制
- 批准号:
10367064 - 财政年份:2017
- 资助金额:
$ 55.62万 - 项目类别:
Discovery of novel mechanisms that impact CFTR translation and contribute to cystic fibrosis pathogenesis
发现影响 CFTR 翻译并导致囊性纤维化发病机制的新机制
- 批准号:
10545091 - 财政年份:2017
- 资助金额:
$ 55.62万 - 项目类别:
Constructing gene-regulatory networks to reveal the metabolic basis of lifespan i
构建基因调控网络揭示寿命的代谢基础
- 批准号:
8372173 - 财政年份:2012
- 资助金额:
$ 55.62万 - 项目类别:
Constructing gene-regulatory networks in yeast for a metabolic basis of lifespan
在酵母中构建基因调控网络作为寿命的代谢基础
- 批准号:
8535594 - 财政年份:2012
- 资助金额:
$ 55.62万 - 项目类别:
Constructing gene-regulatory networks to reveal the metabolic basis of lifespan in yeast
构建基因调控网络以揭示酵母寿命的代谢基础
- 批准号:
9099632 - 财政年份:2012
- 资助金额:
$ 55.62万 - 项目类别:
Constructing gene-regulatory networks to reveal the metabolic basis of lifespan in yeast
构建基因调控网络以揭示酵母寿命的代谢基础
- 批准号:
8871509 - 财政年份:2012
- 资助金额:
$ 55.62万 - 项目类别:
Constructing gene-regulatory networks to reveal the metabolic basis of lifespan i
构建基因调控网络揭示寿命的代谢基础
- 批准号:
8721828 - 财政年份:2012
- 资助金额:
$ 55.62万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 55.62万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 55.62万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 55.62万 - 项目类别: