Cellular dynamics during zebrafish hair cell death, differentiation, and regeneration
斑马鱼毛细胞死亡、分化和再生过程中的细胞动力学
基本信息
- 批准号:10065380
- 负责人:
- 金额:$ 3.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-16 至 2023-06-15
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdultAffectAnimalsBehaviorBiophysicsBirdsCRISPR/Cas technologyCategoriesCell DeathCell ProliferationCell ShapeCellsCellular MorphologyCellular StructuresCellular biologyCessation of lifeClassificationCollaborationsCytoskeletal ModelingCytoskeletonDataDevelopmentDevelopmental BiologyEnvironmentEpithelialEpitheliumExposure toF-ActinFishesGene ExpressionGenetic TranscriptionHair CellsHumanImageLabyrinthLifeLightLinkLocationLoudnessMammalsMethodsMicroscopyModelingMutationMyosin ATPaseNatural regenerationNeomycinNeurogliaNoiseOperative Surgical ProceduresOpticsOrganOrganismPharmaceutical PreparationsPharmacologyPhysical environmentPrincipal InvestigatorRanaRecovery of FunctionReporterResearchResearch PersonnelResourcesScientistSensorySensory HairShapesSignal TransductionStructureSupporting CellSystemTissuesToxic Environmental SubstancesTrainingTransgenic OrganismsUniversitiesVertebratesWashingtonWorkZebrafishbasebonecell behaviorcell injurycell motilitycell regenerationequilibration disorderexperiencehair cell regenerationhearing impairmentimaging studyinhibitor/antagonistinterdisciplinary approachlateral linemutantneuromastototoxicityregenerativeregenerative therapyrepairedshape analysisstem cellstherapy designthree-dimensional modelingtranscriptomicswater flow
项目摘要
PROJECT SUMMARY
Sensory hair cells within the inner ear are susceptible to damage and death from environmental toxins,
including exposure to loud noise and some types of drugs. Because adult mammals have little to no capacity to
regenerate hair cells, hair cell loss causes permanent hearing and balance impairments in humans. In contrast,
nonmammalian vertebrates like fish, frogs, and birds can robustly regenerate hair cells throughout life,
enabling functional recovery after damage in adults. In these animals, nearby support cells act as hair cell
progenitors. Differences in support cell shape, structure, and motility have been observed between
regenerating and non-regenerating organisms, but whether these factors directly regulate regenerative
capacity is unclear. This project seeks to use live imaging of zebrafish lateral line neuromasts to characterize
support cell shape and dynamics during hair cell death, differentiation, and regeneration. One aim of the
project is to use quantitative cell shape analysis to determine the relationship between support cell shape and
fate. Ultimately, this may make it possible to use cell morphology to predict which support cells will act as hair
cell progenitors. Another focus of the project is to understand how actomyosin contractility regulates hair cell
extrusion, differentiation, and regeneration. The actin cytoskeleton is a major determinant of cell shape and
dynamics, and support cell F-actin structure is known to differ in adult mammals compared to non-mammals.
The information gained from these studies may help investigators design therapies to stimulate hair cell
regeneration in adult mammals. It will be important to consider how regenerative therapies will impact the
shape and structure of cells in the inner ear because the function of inner ear organs is highly dependent on
correct cell orientation and organization. This project will take place in Dr. David Raible's lab at the University
of Washington, a rich training environment with abundant expertise and resources to study zebrafish hair cells.
These studies will be done in collaboration with experts in quantitative cell biology and biophysics, who will
provide additional resources and guidance for the principal investigator. The project includes a training plan
that will see the principal investigator gain imaging, modeling, and programming experience to become an
independent research scientist applying interdisciplinary approaches to cell and developmental biology.
项目摘要
内耳内的感觉毛细胞容易受到环境毒素的损害和死亡,
包括暴露于大声噪音和某些类型的药物。因为成年哺乳动物几乎没有能力
再生毛细胞,毛细胞损失会导致永久性听力并平衡人类的损害。相比之下,
诸如鱼,青蛙和鸟类等非乳腺脊椎动物可以在一生中牢固地再生毛细胞,
成人损害后使功能恢复。在这些动物中,附近的支撑细胞充当毛细胞
祖先。已经观察到支持细胞形状,结构和运动的差异
再生和非再生生物,但是这些因素是否直接调节再生
容量尚不清楚。该项目试图使用斑马鱼外侧线神经瘤的实时成像来表征
在毛细胞死亡,分化和再生过程中支持细胞形状和动态。一个目的
项目是使用定量细胞形状分析来确定支持细胞形状与
命运。最终,这可能会使使用细胞形态预测哪些支持细胞充当头发是可能的
细胞祖细胞。该项目的另一个重点是了解肌动蛋白的收缩力如何调节毛细胞
挤出,分化和再生。肌动蛋白细胞骨架是细胞形状的主要决定因素,
与非哺乳动物相比,已知动力学和支持细胞F-肌动蛋白结构在成年哺乳动物中有所不同。
从这些研究中获得的信息可以帮助研究人员设计疗法刺激毛细胞
成人哺乳动物的再生。重要的是要考虑再生疗法将如何影响
由于内耳器官的功能高度依赖于内耳中细胞的形状和结构
正确的单元格式和组织。该项目将在大学的David Raible博士的实验室举行
华盛顿(Washington)是一个丰富的培训环境,具有丰富的专业知识和资源来研究斑马鱼毛细胞。
这些研究将与定量细胞生物学和生物物理学专家合作进行,他们将
为主要研究人员提供其他资源和指导。该项目包括培训计划
这将使主要研究人员获得成像,建模和编程经验,成为一个
独立的研究科学家将跨学科方法应用于细胞和发育生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madeleine N Hewitt其他文献
Madeleine N Hewitt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Madeleine N Hewitt', 18)}}的其他基金
Cellular dynamics during zebrafish hair cell death, differentiation, and regeneration
斑马鱼毛细胞死亡、分化和再生过程中的细胞动力学
- 批准号:
10413050 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
Cellular dynamics during zebrafish hair cell death, differentiation, and regeneration
斑马鱼毛细胞死亡、分化和再生过程中的细胞动力学
- 批准号:
10228588 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 3.73万 - 项目类别:
Post translational modifications tune cardiac myosin
翻译后修饰调节心肌肌球蛋白
- 批准号:
10291447 - 财政年份:2021
- 资助金额:
$ 3.73万 - 项目类别:
Cellular dynamics during zebrafish hair cell death, differentiation, and regeneration
斑马鱼毛细胞死亡、分化和再生过程中的细胞动力学
- 批准号:
10413050 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10425753 - 财政年份:2020
- 资助金额:
$ 3.73万 - 项目类别: