Use of Human Stem Cell-derived RGCs to Study the Mechanism of Optineurin-associated Glaucoma

利用人类干细胞来源的 RGC 研究 Optineurin 相关青光眼的机制

基本信息

  • 批准号:
    10065922
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Glaucoma, which causes damage to and irreversible loss of retinal ganglion cells (RGCs), is a leading cause of blindness worldwide. In America, more than 3 million people are living with this disease. One form of glaucoma, normal tension glaucoma (NTG), in which there is loss of RGCs without evidence of increased eye pressure, is commonly associated with the optineurin (OPTN) E50K mutation. Studies in mice show that the E50K mutation can cause RGC death and optic nerve excavation. To date, all glaucoma therapy is directed at lowering eye pressure, not directly promoting RGC health and survival (neuroprotection). Here we have developed a method to differentiate and purify large amounts of RGCs from human embryonic stem cells to investigate molecular mechanism of optineurin-associated RGC injury. Optineurin is a critical player for mitochondrial degradation in the autophagy pathway, which is known as mitophagy. Our central hypothesis is that the stem cell derived RGCs with the OPTN E50K mutation will recapitulate RGC degeneration in glaucoma by disrupting the mitochondrial quality control (MQC) pathway. The proposed study is broken into three specific aims: 1) Determine the effect of OPTN E50K mutation on mitochondrial function and degradation in RGCs. 2) Investigate molecular mechanism of E50K mediated mitochondrial defect and perform a small molecule screen to find RGC protective compounds. 3) Model RGC degeneration in 3D retina with E50K mutation to study the effect of neuroprotective reagents. This proposal is innovative in multiple ways: first, unlike rodent models this stem cell derived RGC model is more likely to reflect human RGC biology. Second, we will investigate the molecular mechanism of MQC defect in glaucoma associated OPTN mutant in human RGC, which is recently indicated to be important for RGC biology and pathology. Third, a small molecule screen with a mutant reporter line will provide drug-screening platform for glaucoma as well as for other retinal diseases. This project is on track with the successful development of the RGC differentiation and purification method, flow based mitophagy assay and 3D retinal cup formation. We obtained OPTN mutants from our collaborator for the Aim1 and CRISPR based generation of OPTN mutant is underway for aim 2 and 3. PI's co- mentor Dr. Debasish Sinha is a leading scientist in autophagy field, whose office is in the same building and will provide all the support required during the mentored phase. Proposed project is deigned based on PI's expertise in cell biology, molecular biology, microscopy and stem cell along with ongoing training in retinal biology in Don Zack's lab (mentor). PI is in the ideal environment for the proposed research as Don Zack has an established stem cell based retinal research program along with state-of-the-art HCS facilities, stem cell core, several confocal and electron microscopes with renowned vision scientists available at Wilmer Eye/Hopkins. This will help PI to set-up collaboration and learn new techniques to built independent research program on mechanistic investigation of human retinal disease using stem cell derived disease models.
项目总结/摘要 引起视网膜神经节细胞(RGC)损伤和不可逆损失的青光眼是青光眼的主要原因。 全世界失明在美国,超过300万人患有这种疾病。的一种形式 青光眼,正常眼压性青光眼(NTG),其中存在RGC损失,但没有眼睛增加的证据 压力,通常与视神经磷酸酶(OPTN)E50 K突变有关。对小鼠的研究表明, E50 K突变可导致RGC死亡和视神经凹陷。迄今为止,所有青光眼治疗都是针对 降低眼压,不直接促进RGC健康和存活(神经保护)。这里我们有 建立了一种从人胚胎干细胞中大量分离纯化视网膜节细胞的方法 细胞研究视神经氨酸相关的RGC损伤的分子机制。视神经磷酸酶是一个关键的球员, 自噬途径中的线粒体降解,这被称为线粒体自噬。我们的核心假设是 具有OPTN E50 K突变的干细胞衍生的RGC将重演RGC变性, 通过破坏线粒体质量控制(MQC)途径治疗青光眼。拟议的研究分为 三个具体目标:1)确定OPTN E50 K突变对线粒体功能和降解的影响 在RGC中。2)研究E50 K介导的线粒体缺陷的分子机制,并进行小规模的 分子筛选以寻找RGC保护化合物。3)用E50 K在3D视网膜中建立RGC变性模型 突变来研究神经保护剂的作用。这一建议具有多方面的创新性:第一, 与啮齿动物模型不同,该干细胞衍生的RGC模型更可能反映人RGC生物学。第二、 我们将研究青光眼相关OPTN突变体中MQC缺陷的分子机制 RGC是近年来发现的对RGC生物学和病理学有重要意义的蛋白质。第三,小分子 用突变报告细胞系筛选将为青光眼以及其他视网膜病变提供药物筛选平台。 疾病这个项目是在轨道上的成功发展的研究资助局分化和纯化 方法、基于流式细胞术的线粒体自噬测定和3D视网膜杯形成。我们获得了OPTN突变体, 基于Aim 1和CRISPR产生OPTN突变体的合作者正在进行目标2和3的研究。PI的合作- 导师Debasish Sinha博士是自噬领域的领先科学家,他的办公室在同一栋楼里, 将在辅导阶段提供所需的所有支持。建议项目是根据PI设计的 细胞生物学、分子生物学、显微镜和干细胞方面的专业知识,沿着视网膜病变方面的持续培训, 唐·扎克实验室的生物学(导师)。PI是在理想的环境中提出的研究作为唐扎克有 一个建立的干细胞为基础的视网膜研究计划沿着与国家的最先进的HCS设施,干细胞 核心,几个共聚焦和电子显微镜与著名的视觉科学家可在威尔默 眼睛/霍普金斯。这将有助于PI建立合作和学习新技术,以建立独立的研究 使用干细胞衍生疾病模型对人类视网膜疾病进行机制研究的计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arupratan Das其他文献

Arupratan Das的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arupratan Das', 18)}}的其他基金

Use of Human Stem Cell-derived RGCs to Study the Mechanism of Optineurin-associated Glaucoma
利用人类干细胞来源的 RGC 研究 Optineurin 相关青光眼的机制
  • 批准号:
    10356817
  • 财政年份:
    2019
  • 资助金额:
    $ 24.9万
  • 项目类别:
Use of Human Stem Cell-derived RGCs to Study the Mechanism of Optineurin-associated Glaucoma
利用人类干细胞来源的 RGC 研究 Optineurin 相关青光眼的机制
  • 批准号:
    9371133
  • 财政年份:
    2017
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了