Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
基本信息
- 批准号:10066325
- 负责人:
- 金额:$ 7.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2021-04-05
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyCancer PatientCharacteristicsChestClinicClinicalClinical DataClinical TrialsComputer softwareDataData SetDevelopmentDoseEngineeringEnvironmentEvaluationFeasibility StudiesFour-dimensionalGenerationsHeterogeneityImageImaging TechniquesIndividualIndustrializationInstitutionLifeLungMalignant neoplasm of lungMapsMethodsPatientsPerformancePhysiologicalQuality of lifeRadiationRadiation PneumonitisRadiation therapyResearchResolutionRetrospective StudiesSeminalSoftware ToolsStudy modelsSystemTechniquesToxic effectTranslatingTreatment Side EffectsValidationautomated segmentationclinical careclinical practiceclinically significantcommunity centerearly phase trialexperienceimage processingimaging modalityimaging programimprovedimproved outcomeindustry partnerinnovationknowledge basemachine learning methodnovelnovel imaging techniqueprospectivepulmonary functionquality assuranceside effectsoftware developmentstandard of caretoolventilation
项目摘要
Our project proposes an academic-industrial partnership to translate a novel lung function imaging
modality into clinical care for lung cancer patients receiving radiation therapy. Lung cancer patients being treated
with radiation can experience serious and sometimes life threatening thoracic side effects from treatment. There
is emerging data demonstrating that a novel lung function imaging modality can reduce side-effects and improve
quality of life for lung cancer patients undergoing radiation therapy. The novel lung function imaging modality,
referred to as ‘4DCT-ventilation,’ uses 4DCT data along with image processing techniques to innovatively
calculate lung ventilation maps. 4DCT-ventilation can improve outcomes for lung cancer patients by enabling
the generation of functional avoidance radiotherapy plans. Functional avoidance uses 4DCT-ventilation to avoid
functional portions of the lung, with the hypothesis that reducing dose to functional lung will reduce thoracic side-
effects. Our 4DCT-ventilation research has progressed from retrospective studies to an early-phase trial using
4DCT-ventilation for functional avoidance radiotherapy. The early promising toxicity results from 4DCT-
ventilation clinical trials is providing a strong rationale for national trials and expanded clinical integration across
individual clinics. The problem is that expanded clinical integration of 4DCT-ventilation is currently not possible
due to a lack of consistent, efficient, and clinically validated methods. We propose an academic-industry
partnership with MIM Software to address these challenges precluding clinical integration of 4DCT-ventilation.
The purpose of our study is to develop methods that enable safe, efficient, and clinically validated
methods for clinical integration of 4DCT-ventilation functional avoidance. Our overarching hypothesis is that the
4DCT-ventilation functional avoidance innovations we develop will be demonstrated to reduce lung toxicity in
clinics with no prior 4DCT-ventilation experience. The project will be carried out in 3 aims. Aim 1 will develop
methods that enable automated 4DCT-ventilation calculations including auto-segmentation, statistically-robust
calculation methods, and clinically-efficient quality assurance tools. Aim 2 will develop methods for 4DCT-
ventilation functional avoidance radiotherapy including image heterogeneity assessment, development of
knowledge-based functional planning methods, and evaluation of metrics most critical in reducing toxicity. In
conjunction with our industry partner, the developed methods from Aims 1 and 2 will be integrated in a
commercial-grade software tool. Aim 3 will evaluate feasibility by assessing whether 4DCT-ventilation functional
avoidance can be demonstrated to reduce toxicity in clinics with no prior 4DCT-ventilation experience.
Our project will generate both the tools and data needed to provide guidance on how to properly
incorporate 4DCT-ventilation into clinical care. The methods and data will culminate in a commercial-grade
platform suitable for busy clinics. 4DCT-ventilation has great potential to improve outcomes for lung cancer
patients and our project will enable the integration of this novel imaging modality into clinical care.
我们的项目提出了一个学术-工业合作伙伴关系,以翻译一种新的肺功能成像
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Castillo其他文献
Edward Castillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Castillo', 18)}}的其他基金
Quantitative Lung Function Imaging to Reduce Toxicity for patients treated with Radiation and Immunotherapy
定量肺功能成像可减少接受放射和免疫治疗的患者的毒性
- 批准号:
10407952 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10414398 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Quantitative Lung Function Imaging to Reduce Toxicity for patients treated with Radiation and Immunotherapy
定量肺功能成像可减少接受放射和免疫治疗的患者的毒性
- 批准号:
10917461 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10818993 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10555187 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Quantitative Lung Function Imaging to Reduce Toxicity for patients treated with Radiation and Immunotherapy
定量肺功能成像可减少接受放射和免疫治疗的患者的毒性
- 批准号:
10081648 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10747688 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10319934 - 财政年份:2021
- 资助金额:
$ 7.57万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
9884484 - 财政年份:2020
- 资助金额:
$ 7.57万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.57万 - 项目类别:
Research Grant














{{item.name}}会员




