Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
基本信息
- 批准号:10747688
- 负责人:
- 金额:$ 10.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-29 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyCancer PatientCharacteristicsChestClinicClinicalClinical DataClinical TrialsCommercial gradeComputer softwareDataData SetDevelopmentDoseEngineeringEnvironmentEvaluationFeasibility StudiesFour-dimensionalGenerationsHeterogeneityImageImaging TechniquesIndividualIndustrializationInstitutionLifeLungMalignant neoplasm of lungMapsMethodsPatientsPerformancePhysiologicalQuality of lifeRadiationRadiation PneumonitisRadiation therapyResearchResolutionRetrospective StudiesSeminalSoftware ToolsStudy modelsSystemTechniquesToxic effectTranslatingTreatment Side EffectsValidationautomated segmentationclinical careclinical practiceclinically significantcommunity centerearly phase trialexperiencefour-dimensional computed tomographyimage processingimaging modalityimprovedimproved outcomeindustry partnerinnovationknowledge basemachine learning methodnovelnovel imaging techniqueprogramsprospectivepulmonary functionquality assuranceside effectsoftware developmentstandard of caretoolventilation
项目摘要
Our project proposes an academic-industrial partnership to translate a novel lung function imaging modality
into clinical care for lung cancer patients receiving radiation therapy. Lung cancer patients being treated with
radiation can experience serious and sometimes life threatening thoracic side effects from treatment. There is
emerging data demonstrating that a novel lung function imaging modality can reduce side-effects and improve
quality of life for lung cancer patients undergoing radiation therapy. The novel lung function imaging modality,
referred to as `4DCT-ventilation,' uses 4DCT data along with image processing techniques to innovatively
calculate lung ventilation maps. 4DCT-ventilation can improve outcomes for lung cancer patients by enabling
the generation of functional avoidance radiotherapy plans. Functional avoidance uses 4DCT-ventilation to
avoid functional portions of the lung, with the hypothesis that reducing dose to functional lung will reduce
thoracic side effects. Our 4DCT-ventilation research has progressed from retrospective studies to an early-
phase trial using 4DCT-ventilation for functional avoidance radiotherapy. The early promising toxicity results
from 4DCTventilation clinical trials is providing a strong rationale for national trials and expanded clinical
integration across individual clinics. The problem is that expanded clinical integration of 4DCT-ventilation is
currently not possible due to a lack of consistent, efficient, and clinically validated methods. We propose an
academic-industry partnership with MIM Software to address these challenges precluding clinical integration of
4DCT-ventilation. The purpose of our study is to develop methods that enable safe, efficient, and clinically
validated methods for clinical integration of 4DCT-ventilation functional avoidance. Our overarching hypothesis
is that the 4DCT-ventilation functional avoidance innovations we develop will be demonstrated to reduce lung
toxicity in clinics with no prior 4DCT-ventilation experience. The project will be carried out in 3 aims. Aim 1 will
develop methods that enable automated 4DCT-ventilation calculations including auto-segmentation,
statistically-robust calculation methods, and clinically-efficient quality assurance tools. Aim 2 will develop
methods for 4DCTventilation functional avoidance radiotherapy including image heterogeneity assessment,
development of knowledge-based functional planning methods, and evaluation of metrics most critical in
reducing toxicity. In conjunction with our industry partner, the developed methods from Aims 1 and 2 will be
integrated in a commercial-grade software tool. Aim 3 will evaluate feasibility by assessing whether 4DCT-
ventilation functional avoidance can be demonstrated to reduce toxicity in clinics with no prior 4DCT-ventilation
experience. Our project will generate both the tools and data needed to provide guidance on how to properly
incorporate 4DCT-ventilation into clinical care. The methods and data will culminate in a commercial-grade
platform suitable for busy clinics. 4DCT-ventilation has great potential to improve outcomes for lung cancer
patients and our project will enable the integration of this novel imaging modality into clinical care.
我们的项目提出了学术-工业合作伙伴关系,以转化一种新型的肺功能成像模式
进入接受放射治疗的肺癌患者的临床护理。正在接受治疗的肺癌患者
放射治疗可能会产生严重的、有时甚至危及生命的胸部副作用。有
新出现的数据表明,一种新型的肺功能成像方式可以减少副作用并改善
接受放射治疗的肺癌患者的生活质量。新颖的肺功能成像模式,
被称为“4DCT-通风”,使用 4DCT 数据和图像处理技术创新地
计算肺通气图。 4DCT 通气可以改善肺癌患者的预后
功能性避免放射治疗计划的生成。功能性回避使用 4DCT 通气来
避免肺的功能部分,假设减少功能肺的剂量会减少
胸部副作用。我们的 4DCT 通气研究已从回顾性研究进展到早期研究
使用 4DCT 通气进行功能性避免放射治疗的阶段试验。早期有希望的毒性结果
4DCT 通气临床试验为国家试验和扩大临床试验提供了强有力的依据
各个诊所之间的整合。问题是 4DCT 通气的临床整合扩展是
由于缺乏一致、有效和经过临床验证的方法,目前尚不可能。我们提出一个
学术界与 MIM Software 合作,解决这些阻碍临床整合的挑战
4DCT-通风。我们研究的目的是开发能够安全、高效、临床应用的方法
4DCT-通气功能性避免临床整合的经过验证的方法。我们的总体假设
我们开发的 4DCT 通气功能回避创新将被证明可以减少肺损伤
在没有 4DCT 通气经验的诊所中的毒性。该项目将实现3个目标。目标1将
开发能够实现自动 4DCT 通气计算的方法,包括自动分段、
统计稳健的计算方法和临床有效的质量保证工具。目标2将发展
4DCT通气功能性避免放射治疗的方法,包括图像异质性评估,
开发基于知识的功能规划方法,以及评估最关键的指标
减少毒性。与我们的行业合作伙伴一起,目标 1 和 2 开发的方法将是
集成在商业级软件工具中。目标 3 将通过评估 4DCT 是否可行来评估可行性
在没有事先进行 4DCT 通气的诊所中,通气功能性避免可以被证明可以减少毒性
经验。我们的项目将生成所需的工具和数据,为如何正确地提供指导
将 4DCT 通气纳入临床护理。这些方法和数据最终将形成商业级
适合繁忙诊所的平台。 4DCT 通气在改善肺癌预后方面具有巨大潜力
患者和我们的项目将使这种新颖的成像方式整合到临床护理中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Castillo其他文献
Edward Castillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Castillo', 18)}}的其他基金
Quantitative Lung Function Imaging to Reduce Toxicity for patients treated with Radiation and Immunotherapy
定量肺功能成像可减少接受放射和免疫治疗的患者的毒性
- 批准号:
10407952 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10414398 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Quantitative Lung Function Imaging to Reduce Toxicity for patients treated with Radiation and Immunotherapy
定量肺功能成像可减少接受放射和免疫治疗的患者的毒性
- 批准号:
10917461 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10818993 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10555187 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Quantitative Lung Function Imaging to Reduce Toxicity for patients treated with Radiation and Immunotherapy
定量肺功能成像可减少接受放射和免疫治疗的患者的毒性
- 批准号:
10081648 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10319934 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
9884484 - 财政年份:2020
- 资助金额:
$ 10.24万 - 项目类别:
Development of a Novel Lung Function Imaging Modality for comprehensive management of lung cancer
开发用于肺癌综合管理的新型肺功能成像模式
- 批准号:
10066325 - 财政年份:2020
- 资助金额:
$ 10.24万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.24万 - 项目类别:
Research Grant














{{item.name}}会员




