Direct 3D Reconstruction Methods for Electrical Impedance Tomography for Stroke Imaging

用于中风成像的电阻抗断层扫描的直接 3D 重建方法

基本信息

  • 批准号:
    10064622
  • 负责人:
  • 金额:
    $ 22.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Every four minutes an American dies from stroke, equating to approximately 1 in every 19 US deaths annually. Strokes are classified as ischemic and hemorrhagic. Ischemic strokes make up 87% of all strokes and are caused by a blockage in a blood vessel (or artery) resulting in a lack of blood to the brain. A hemorrhagic stroke occurs when an artery in the brain leaks or ruptures releasing excess blood in or around the brain. Incorrect classification can have dire consequences as treating a patient suffering from a hemorrhagic stroke (bleed) with anticoagulant drugs (used to dissolve blood clots for ischemic strokes) can prove fatal. Early action is of the utmost importance as each passing minute that brain cells lack the proper blood flow additional cells die. Current classification methods require tests performed at the hospital, e.g., CT or MRI scans of the patient's brain, leading to treatment delays. These delays are particularly lengthy for patients living in rural communities. Electrical Impedance Tomography (EIT) is an emerging medical imaging modality that is inexpensive, has no ionizing radiation, and provides portable high-contrast images using harmless surface current and voltage measurements (e.g., on the head using a flexible hat) to recover the internal point-wise electrical properties (e.g., inside the brain). EIT can recover conductivity, a measure of how easily current flows through a material, as well as permittivity, a measure of the ability of a material to store a charge. A hemorrhagic stroke corresponds to an area of abnormally high conductivity due to the bleed, whereas an ischemic stroke presents as an area of lower conductivity than expected due cellular swelling from energy failure. The proposed project addresses the important problem of early, fast, portable stroke classification with EIT. A critical barrier for the use of EIT for stroke imaging has been the sensitivity of the image reconstruction algorithms to incorrect domain modeling and noise in the data. Due to these challenges, most research has focused on monitoring applications, not helpful for the classification task. By contrast, the D-bar reconstruction method proposed here is the only proven noise and modeling error robust reconstruction method capable of recovering the true conductivity/permittivity using a low-pass filtering in a nonlinear Fourier domain. D-bar methods have been successful in 2D but their development in 3D is stunted. This proposal focuses on the development of fast, robust D-bar based reconstruction methods for the 3D partial boundary problem, critical to working with stroke EIT data. Numerical algorithms will be developed for the full and partial boundary problems in 3D and validated on simulated and experimental data. A priori information, from anatomical atlases, will be embedded into the methods for increased resolution and stability. As the low-pass filtering in D-bar methods leads to blurred reconstructions, post-processing through Convolutional Neural Networks will provide improved image quality. This work will be the first to develop robust computational algorithms for 3D EIT data, opening the door for stroke imaging.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah J Hamilton其他文献

Sarah J Hamilton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了