Use of Machine Learning on Integrated Electronic Medical Record, Genetic and Waveform Data to Predict Perioperative Cardiorespiratory Instability
使用机器学习集成电子病历、遗传和波形数据来预测围手术期心肺不稳定性
基本信息
- 批准号:10055690
- 负责人:
- 金额:$ 17.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-25 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptionAdvisory CommitteesAffectAfrican AmericanAlgorithmsAmericanArrhythmiaAtlasesCaliforniaClinical InformaticsCollaborationsComplexComputerized Medical RecordDataData SecurityDatabasesDiseaseEnsureEventFunctional disorderGeneticGenetic DatabasesGenetic RiskGenomicsGoalsHealthHealthcareHypotensionIndividualInfrastructureInpatientsJointsLatinoLogistic RegressionsLos AngelesMachine LearningManualsMedical GeneticsMedical HistoryMedicineMentorsModelingModernizationMorphologic artifactsOperative Surgical ProceduresOutcomeOutpatientsPatient-Focused OutcomesPatientsPerformancePerioperativePerioperative complicationPharmaceutical PreparationsPhenotypePhysiologicalPhysiologyPopulation AnalysisPopulation HeterogeneityPostoperative ComplicationsPrevalenceProcessProviderRecurrenceResearchResearch PersonnelRiskSignal TransductionSubgroupTechniquesTimeTrainingUniversitiesWorkacute stressautomated algorithmbasebiobankbiological adaptation to stresscareercareer developmentcostdeep neural networkdesigndiverse dataelectronic dataethnic minority populationexperiencefeedinggenetic informationgenetic profilinggenomic datahemodynamicsimprovedlong short term memorymultiple data sourcesonline courseoutcome predictionphenotyping algorithmprediction algorithmpredictive modelingpressurepreventprogramsrandom foreststructured datatool
项目摘要
Project Summary/Abstract
The objective of this K01 application is to give Dr. Hofer the necessary training and research experience
to establish himself as an independent investigator focused on using machine learning (ML) on a variety of
healthcare data to predict outcomes during the perioperative period. The career development activities consist
of escalating coursework on machine learning beginning with an online course of ML fundamentals and ending
with a UCLA course on ML applications in healthcare. Augmenting these courses are tutorials on the application
of these techniques to healthcare data and a research program is designed to use ML on healthcare data to
predict perioperative cardio-respiratory instability (CRI) – specifically hypotension and arrhythmia.
To achieve these goals, Dr. Hofer has established an outstanding team of leaders in machine learning,
perioperative medicine, and clinical informatics. Dr. Maxime Cannesson, his primary mentor, is an expert in
perioperative medicine and the use of ML on physiologic signals. Dr. Eran Halperin, the co-mentor for this pro-
posal, is an expert in ML and its application to genomic and other healthcare data. Dr. Hofer has ongoing collab-
orations with Drs. Cannesson and Halperin on joint projects. Both Drs. Cannesson and Halperin have a strong
track record of mentoring individuals who have progressed to independent and productive academic careers.
Dr. Hofer will be aided by an advisory committee consisting of Dr. Douglas Bell (who will provide guidance on
integrating data from multiple sources), Dr. Mohammed Mahbouba (providing support regarding data security
and creating enterprise level analytic solutions) and Dr. Jeanine Wiener-Kronish (providing guidance on the most
relevant questions in perioperative outcome prediction).
Challenges managing CRI have been implicated in the more than 15 million annual postoperative com-
plications, costing more than $165 billion, however no scores exist to predict CRI. This study will leverage unique
infrastructure at UCLA where whole EMR data has been combined with physiologic waveforms and genomic
data on more than 30,000 patients. This proposal will use a variety of ML techniques on these data to create
predictive models for CRI.
In summary, this proposal will provide Dr. Hofer with both technical training in ML and hands on experi-
ence in using ML to predict perioperative outcomes. This study has the potential to create models that will help
clinicians predict, and thus avoid, perioperative instability, thereby improving patient outcomes. Additionally, this
program will provide Dr. Hofer with the tools he needs to successfully compete for a R01 focusing on using ML
models on a variety of healthcare data to predict the downstream effects of CRI – perioperative complications.
项目总结/摘要
本K 01申请的目的是为霍费尔博士提供必要的培训和研究经验
将自己定位为一名独立调查员,专注于将机器学习(ML)用于各种
医疗保健数据,以预测围手术期的结果。职业发展活动包括
升级机器学习课程,从机器学习基础的在线课程开始,
加州大学洛杉矶分校的ML在医疗保健中的应用课程。补充这些课程的是应用程序教程
这些技术应用于医疗数据,一项研究计划旨在将ML用于医疗数据,
预测围手术期心肺不稳定(CRI)-特别是低血压和心律失常。
为了实现这些目标,霍费尔博士建立了一个机器学习领域的杰出领导团队,
围手术期医学和临床信息学。他的主要导师马克西姆·坎内森博士是
围手术期医学和ML在生理信号上的应用。Eran Halperin博士,这个专业的共同导师-
他是ML及其在基因组和其他医疗数据中应用的专家。霍费尔博士正在与
与坎内松博士和哈尔佩林博士就联合项目发表演讲。Cannesson和Halperin博士都有很强的
辅导个人谁已经发展到独立和富有成效的学术生涯的跟踪记录。
博士由道格拉斯贝尔博士组成的咨询委员会将协助霍费尔(他将提供以下方面的指导
Mohammed Mahbouba博士(提供有关数据安全的支持
和创建企业级分析解决方案)和Jeanine Wiener-Kronish博士(提供有关
围手术期结局预测中的相关问题)。
每年超过1500万例术后并发症涉及管理CRI的挑战,
复杂性,耗资超过1650亿美元,但没有分数存在预测CRI。这项研究将利用独特的
在加州大学洛杉矶分校的基础设施,整个EMR数据已与生理波形和基因组相结合,
超过30,000名患者的数据。该提案将在这些数据上使用各种ML技术来创建
CRI的预测模型。
总之,该提案将为霍费尔博士提供ML方面的技术培训和实践经验。
使用ML预测围手术期结局的价值。这项研究有可能建立模型,
临床医生预测并因此避免围手术期不稳定性,从而改善患者结果。而且这个
该计划将为霍费尔博士提供成功竞争专注于使用机器学习的R 01所需的工具
基于各种医疗保健数据建立模型,以预测CRI的下游影响-围手术期并发症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ira Hofer其他文献
Ira Hofer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ira Hofer', 18)}}的其他基金
Use of Machine Learning on Integrated Electronic Medical Record, Genetic andWaveform Data to Predict Perioperative Cardiorespiratory Instability
使用机器学习集成电子病历、遗传和波形数据来预测围手术期心肺不稳定性
- 批准号:
10689147 - 财政年份:2020
- 资助金额:
$ 17.53万 - 项目类别:
Use of Machine Learning on Integrated Electronic Medical Record, Genetic andWaveform Data to Predict Perioperative Cardiorespiratory Instability
使用机器学习集成电子病历、遗传和波形数据来预测围手术期心肺不稳定性
- 批准号:
10590373 - 财政年份:2020
- 资助金额:
$ 17.53万 - 项目类别:
Use of Machine Learning on Integrated Electronic Medical Record, Genetic and Waveform Data to Predict Perioperative Cardiorespiratory Instability
使用机器学习集成电子病历、遗传和波形数据来预测围手术期心肺不稳定性
- 批准号:
10247089 - 财政年份:2020
- 资助金额:
$ 17.53万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 17.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 17.53万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 17.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.53万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 17.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.53万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 17.53万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 17.53万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 17.53万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 17.53万 - 项目类别:
Standard Grant