Combined DDE MRI and Electrophysiology Prediction of Spinal Cord Injury
DDE MRI 和电生理学联合预测脊髓损伤
基本信息
- 批准号:10058003
- 负责人:
- 金额:$ 44.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnatomyAnimal ModelAnimalsAnisotropyAxonBehavioralBladderClassificationClinical/RadiologicConsciousContusionsCorticospinal TractsCraniocerebral TraumaDataDiffusionDiffusion Magnetic Resonance ImagingDimensionsEdemaElectrophysiology (science)Family suidaeFunctional disorderGoalsHemorrhageHistologyHumanImageImaging TechniquesIndividualInflammationInjuryInternationalLengthLesionMagnetic Resonance ImagingMeasurementMeasuresMethodsModelingNervous System PhysiologyNervous System TraumaNeural ConductionNeurologicNeurological outcomeNeurophysiology - biologic functionOutcomePatient-Focused OutcomesPatientsPhysiciansPhysiologicalRattusRecoveryResearchResidual stateRodent ModelRoleSedation procedureSeveritiesSiteSphincterSpinalSpinal CordSpinal Cord ContusionsSpinal cord injurySpinal cord injury patientsStimulusStructureThoracic InjuriesTissuesTranslatingUrodynamicsanatomic imagingaxon injuryclinical translationexperimental studyfunctional outcomesgray matterimaging approachimaging systemimprovedindexingindividual patientinjurednoveloutcome forecastoutcome predictionpressureprognosticresponsesevere injurytranslation to humansurologicwhite matter
项目摘要
The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) neurological exam
and magnetic resonance imaging (MRI) —the prevailing methods to assess severity of injury and predict
prognosis— suffer from significant limitations and often fail to accurately predict long-term outcome in
individuals, and neither provides information on the functional and physiological viability of residual cord tissue
altered by the injury. Using standard MRI, physicians may grossly under/overestimate the degree of intrinsic
cord injury or functional connectivity of cord tissue. Thus, these widely used clinical and radiological
assessments are often unable to distinguish between incomplete and complete injuries and more sensitive
determinants of long-term outcomes are critically needed. Diffusion tensor imaging (DTI) is an MRI technique
that has shown promise in estimating the degree of axonal injury in acutely injured cord in both animal and
limited human studies. However, fractional anisotropy (FA), a key DTI parameter that is reduced in acute SCI,
is confounded by edema and hemorrhage making its interpretation and reliability problematic. A novel diffusion
MRI alternative, double diffusion encoding (DDE), has shown high sensitivity to axonal injury with minimal
contribution from edema and accurately predicts outcomes in a rat SCI model. However, rodent models of SCI
are limited, and it remains uncertain if DDE performs as reliably in a large animal model more faithfully
replicating human SCI. Furthermore, the relationship between DDE and electrophysiological activity, which is
critical to establishing the functional integrity or neural conduction block across the injury site, has not been
explored. Our goal is to enhance the translational applicability of DDE using a validated large animal porcine
contusion model currently being used by our group. Preliminary MRI data from our group using this model
matches both the quality and challenges of human SCI imaging. To relate DDE-derived axonal injury index
(ADC||) with neural function, we will conduct both DDE assessments and intraoperative D-wave epidural
electrophysiology in a porcine contusion SCI model with mild (n=6) and severe (n=6) injury. Successful project
completion will lead to direct translation to human SCI patient studies with the long-term goal of improving
patient outcomes from such a devastating injury.
脊髓损伤神经学分类国际标准(ISNCSCI)神经学检查
和磁共振成像(MRI)-评估损伤严重程度和预测
预后-具有显著的局限性,通常无法准确预测长期结果,
没有提供关于残余脐带组织的功能和生理活性的信息
因受伤而改变。使用标准MRI,医生可能会严重低估/高估固有的程度。
脊髓损伤或脊髓组织的功能连接。因此,这些广泛使用的临床和放射学
评估通常无法区分不完全和完全损伤,
迫切需要长期成果的决定因素。扩散张量成像(DTI)是一种MRI技术,
这在估计动物和动物急性损伤脊髓的轴突损伤程度方面显示出希望,
有限的人类研究。然而,分数各向异性(FA),一个在急性SCI中降低的关键DTI参数,
被水肿和出血混淆,使其解释和可靠性成问题。一种新型的扩散
MRI的替代,双扩散编码(DDE),已显示出高敏感性轴突损伤与最小
在大鼠脊髓损伤模型中,评估水肿的贡献并准确预测结果。然而,脊髓损伤的啮齿动物模型
是有限的,并且仍然不确定DDE是否在大型动物模型中更忠实地可靠地执行
复制人类脊髓损伤此外,DDE和电生理活动之间的关系,
对于建立损伤部位的功能完整性或神经传导阻滞至关重要,
探讨了我们的目标是使用经验证的大型动物猪来增强DDE的翻译适用性
我们小组正在使用的挫伤模型。我们小组使用该模型的初步MRI数据
符合人体脊髓损伤成像的质量和挑战。将DDE衍生的轴突损伤指数
(ADC||) with neural function, we will conduct both DDE assessments and intraoperative D-wave epidural
在具有轻度(n=6)和重度(n=6)损伤的猪挫伤SCI模型中的电生理学。成功的项目
完成后将直接转化为人类SCI患者研究,其长期目标是改善
患者的预后是如此的严重。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury.
- DOI:10.1002/acn3.51855
- 发表时间:2023-09
- 期刊:
- 影响因子:5.3
- 作者:Ahmed, Rakib Uddin;Medina-Aguinaga, Daniel;Adams, Shawns;Knibbe, Chase A.;Morgan, Monique;Gibson, Destiny;Kim, Joo-won;Sharma, Mayur;Chopra, Manpreet;Davison, Steven;Sherwood, Leslie C.;Negahdar, M. J.;Bert, Robert;Ugiliweneza, Beatrice;Hubscher, Charles;Budde, Matthew D.;Xu, Junqian;Boakye, Maxwell
- 通讯作者:Boakye, Maxwell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxwell Boakye其他文献
Maxwell Boakye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxwell Boakye', 18)}}的其他基金
BDNF Polymorphism and TBS on Practice Dependent Plasticity in Lower Limb
BDNF 多态性和 TBS 对下肢实践依赖性可塑性的影响
- 批准号:
8854041 - 财政年份:2010
- 资助金额:
$ 44.38万 - 项目类别:
BDNF Polymorphism and TBS on Practice Dependent Plasticity in Lower Limb
BDNF 多态性和 TBS 对下肢实践依赖性可塑性的影响
- 批准号:
8466765 - 财政年份:2010
- 资助金额:
$ 44.38万 - 项目类别:
BDNF Polymorphism and TBS on Practice Dependent Plasticity in Lower Limb
BDNF 多态性和 TBS 对下肢实践依赖性可塑性的影响
- 批准号:
7871220 - 财政年份:2010
- 资助金额:
$ 44.38万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 44.38万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 44.38万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 44.38万 - 项目类别:
Research Grant