Nanoscale dynamics of voltage-gated calcium channels at presynaptic active zones in live C. elegans
活线虫突触前活动区电压门控钙通道的纳米级动力学
基本信息
- 批准号:10056911
- 负责人:
- 金额:$ 43.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAnimal ModelAnimalsArchitectureAreaBehaviorBindingBiologyBrainCRISPR/Cas technologyCaenorhabditis elegansCalciumCalcium ChannelCell membraneClustered Regularly Interspaced Short Palindromic RepeatsCo-ImmunoprecipitationsCommunicationComplementComplexCoupledCouplingDataDiffuseDockingElectronsEquilibriumExocytosisGeneticImaging TechniquesImpairmentIndividualKnock-inLateralLinkMass Spectrum AnalysisMembraneMethodsModelingMolecularN-terminalNamesNematodaNeuronsPopulationPositioning AttributePresynaptic TerminalsProbabilityProteinsRegistriesRegulationSNAP receptorSignal TransductionSynapsesSynaptic TransmissionSynaptic VesiclesSynaptic plasticityTestingTransgenic OrganismsVesicleVisualizationWorkcytomatrixdensitygain of function mutationgenome editingimaging studyin vivolight microscopyloss of functionmicroscopic imagingmutantnanometernanoscaleneural circuitneurotransmissionneurotransmitter releaseorganizational structurepresynapticresponsesingle moleculesynaptic functiontoolvesicular releasevoltage
项目摘要
ABSTRACT
In neural circuits, adaptive responses to changes in transmitted signals are conveyed by subtle modulations in the strength
of synaptic connections. This short-term synaptic plasticity involves adjustments of the neurotransmitter release probability
of synaptic vesicles (SVs) positioned in presynaptic areas called active zones (AZ). A key function of the AZ molecular
machinery is to precisely position diffusing membrane voltage-gated calcium channels (VGCCs) in registry with primed
SVs, so as to establish the local Ca2+ concentration gradients that ultimately initiate SV fusion and neurotransmitter release.
Previous studies have shown that active zone cytomatrix (CAZ) proteins are determinants of the spatial coupling between
VGCCs and SVs and that the mobility of VGCCs can tune the SV release probability by setting local channel densities and
Ca2+ concentrations. While this suggests that modulation of VGCC dynamics by CAZ proteins could underlie presynaptic
plasticity, a fundamental, yet still unanswered question in synaptic biology is how CAZ proteins regulate the mobility of
VGCCs and precisely positioned them within AZ a few hundreds of nanometer in size, in the first place.
An important challenge in addressing this question has been the absence of methods that allow direct visualization and
quantification of VGCC dynamics at the nanometer scale within AZ of intact synapses in live animals. Using CRISPR
genetics and complementation activated light microscopy (CALM), an in vivo single molecule (SM) imaging technique that
we introduced recently, we have started to define how the molecular machinery of AZ modulates the nanoscale mobility of
VGCCs using the nematode Caenorhabditis elegans (C.elegans) as a live animal model. Our preliminary data demonstrate
that neuronal VGCCs have heterogeneous diffusive behaviors in vivo, and that their nanoscale mobility is effectively
controlled by key CAZ proteins.
Here, we built on this preliminary work to further dissect the molecular mechanisms by which different CAZ proteins
specifically regulate the presynaptic membrane dynamics of VGCCs in order to guaranty precise neurotransmission.
Specifically, we will determine how VGCC dynamics are regulated by (i) the CAZ protein RIM/UNC-10, (ii) coupling to
SVs and (iii) coupling to other CAZ regulators (Aim 1), how the priming levels of SVs at AZ influence the mobility of
VGCCs (Aim 2), and how the presynaptic dense projection centered in the AZ modulates the nanoconfinement zones of
diffusing VGCCs. (Aim 3).
Together, the proposed studies will advance our fundamental understanding of the molecular organization and function of
the synaptic AZ within intact neurons in live animals. It will also provide new models for regulation of neurotransmission
and short-term synaptic plasticity that integrate the nanoscale dynamics of VGCCs and the structural organization of AZ.
抽象的
在神经回路中,对传输信号变化的自适应响应是通过强度的微妙调制来传达的
突触连接。这种短期突触可塑性涉及神经递质释放概率的调整
突触小泡 (SV) 位于称为活动区 (AZ) 的突触前区域。 AZ分子的关键功能
机器的作用是将扩散膜电压门控钙通道(VGCC)精确定位在已涂底漆的位置上
SV,从而建立局部 Ca2+ 浓度梯度,最终启动 SV 融合和神经递质释放。
先前的研究表明,活性区细胞基质(CAZ)蛋白是细胞间空间耦合的决定因素。
VGCC 和 SV 以及 VGCC 的移动性可以通过设置本地通道密度来调整 SV 释放概率
Ca2+ 浓度。虽然这表明 CAZ 蛋白对 VGCC 动力学的调节可能是突触前
可塑性是突触生物学中一个基本但尚未解答的问题,即 CAZ 蛋白如何调节突触的活动性
首先,VGCC 并将它们精确地定位在数百纳米大小的 AZ 内。
解决这个问题的一个重要挑战是缺乏允许直接可视化和
活体动物完整突触 AZ 内纳米级 VGCC 动力学的量化。使用CRISPR
遗传学和互补激活光学显微镜 (CALM),一种体内单分子 (SM) 成像技术
我们最近介绍,我们已经开始定义 AZ 的分子机制如何调节 AZ 的纳米级迁移率
VGCC 使用线虫秀丽隐杆线虫 (C.elegans) 作为活体动物模型。我们的初步数据表明
神经元 VGCC 在体内具有异质扩散行为,并且它们的纳米级迁移性有效
由关键的 CAZ 蛋白控制。
在这里,我们在此基础上进一步剖析不同 CAZ 蛋白的分子机制
特异性调节 VGCC 的突触前膜动力学,以保证精确的神经传递。
具体来说,我们将确定 VGCC 动力学如何通过 (i) CAZ 蛋白 RIM/UNC-10,(ii) 耦合来调节
SV 和 (iii) 与其他 CAZ 调节器耦合(目标 1),AZ 处 SV 的启动水平如何影响
VGCC(目标 2),以及以 AZ 为中心的突触前致密投影如何调节 VGCC 的纳米限制区
扩散 VGCC。 (目标 3)。
总之,拟议的研究将增进我们对分子组织和功能的基本理解
活体动物完整神经元内的突触 AZ。它还将为神经传递调节提供新模型
以及短期突触可塑性,整合了 VGCC 的纳米级动力学和 AZ 的结构组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabien Pinaud其他文献
Fabien Pinaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fabien Pinaud', 18)}}的其他基金
Nanoscale dynamics of voltage-gated calcium channels at presynaptic active zones in live C. elegans
活线虫突触前活动区电压门控钙通道的纳米级动力学
- 批准号:
10254604 - 财政年份:2020
- 资助金额:
$ 43.43万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.43万 - 项目类别:
Research Grant














{{item.name}}会员




