Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
基本信息
- 批准号:10080473
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlabamaArchitectureAreaBiomimeticsBiopsyBiopsy SpecimenCell DeathCell LineCessation of lifeChemotherapy-Oncologic ProcedureClinicalCollaborationsComprehensive Cancer CenterCore BiopsyDataDevelopmentDevicesDiagnosisDiagnosticDiffuseDrug Delivery SystemsExcisionExposure toFutureGoalsHarvestHumanIn VitroInfusion proceduresLegal patentMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasModelingOperative Surgical ProceduresPainPancreasPancreatic Ductal AdenocarcinomaPatient RightsPatientsPerformance StatusPharmaceutical PreparationsPharmacologyPhasePreparationPrognostic FactorProtocols documentationProviderQuality of lifeRegimenRight to TreatmentsSerum AlbuminSmall Business Innovation Research GrantSpecimenSurface PropertiesSurvival RateSystemic TherapyTechnologyTestingTherapeutic UsesTimeTissuesTumor TissueUniversitiesValidationWorkXenograft procedurebasecancer therapychemotherapyclinical decision-makingclinically translatablecommercializationcostdesigndrug testingeffective therapyefficacy testinghuman tissueimage processingimprovedindividual patientineffective therapiesovertreatmentpersonalized medicinepersonalized predictionspre-clinicalprecision oncologypredictive testpredictive toolsresponsescreeningstandard of caretissue culturetooltreatment responsetreatment strategytumortumor xenograft
项目摘要
Project Summary/Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers with <9% five-year survival rate and
an estimated 60,000 deaths/year by 2030. PDAC is often diagnosed at an advanced stage thereby precluding
surgical resection for most patients. While new systemic therapy regimens have improved survival, availability
of multiple options, without tools to select an optimal regimen from these (on an individualized basis), has created
a frustrating paradox in clinical decision-making. Due to a lack of personalized predictive tools, current standard
of care treatment strategy is based on prognostic factors such as age, stage, performance status, serum albumin,
etc. There is a critical, urgent and unmet need to develop predictive tools that can identify optimal systemic
therapy regimens and eliminate from consideration ineffective options, on an individualized basis, to improve
quality of life and reduce overtreatment. CerFlux, Inc. is developing such predictive technology with its low-cost
and rapid Personalized Oncology Efficacy Test (POET) to match each patient with the right treatment – before
treatment – to transform pancreatic cancer treatment in the near-term and make a difference in the lives of
patients and providers around the world. Our personalized medicine approach is unique and further enhanced
by a commercial-academic collaboration between CerFlux, Inc. and the O’Neil Comprehensive Cancer Center
at the University of Alabama at Birmingham. The proposed project will build on recent work by our team including
a patented (US 10,114,010B1) biomimetic in vitro platform for pharmacological transport and pancreatic
microtissue tumor models. The commercial goal of this proposal is to identify best practices for using POET in
personalized therapy. Our hypothesis is that response to treatment observed in POET will approximate the
response in the corresponding patient. Our objective is to predict both effective and ineffective treatments for
each patient prior to initiating treatment. We propose the following aims to achieve our objective:
Aim 1: Calibrate and optimize POET for evaluating therapeutics using human PDAC cell-line xenografts for
subsequent testing with patient tissue.
Aim 2: Evaluate efficacy of various systemic therapy agents in POET on an individualized basis to establish
protocols and best practices for using POET in personalized therapy.
We envision substantial continuing commercial-academic collaboration between CerFlux, Inc. and the O’Neil
Comprehensive Cancer Center at the University of Alabama at Birmingham including the integration of machine
learning to derive a “POET Score” – a personalized quantitative efficacy score – based on a combination of
factors. Data from POET and the POET Score will help clinical teams rank treatments for individual patients
before the first drug infusion. If successful, this SBIR-driven study has the potential to transform pancreatic
cancer treatment in the near-term and make a positive impact around the world.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karim I Budhwani其他文献
Karim I Budhwani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karim I Budhwani', 18)}}的其他基金
Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
- 批准号:
10303439 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
相似海外基金
Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
- 批准号:
2404955 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
IUCRC Planning Grant The University of Alabama: Center to Accelerate Recipe Development for Additive Manufacturing of Metals (CARDAMOM)
IUCRC 规划拨款阿拉巴马大学:加速金属增材制造配方开发中心 (CARDAMOM)
- 批准号:
2333363 - 财政年份:2024
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
- 批准号:
2338987 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Conference: Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2243027 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Conference: HBCU Excellence in Research and EPSCoR Regional Outreach Workshop at Alabama State University (HERO-ASU)
会议:阿拉巴马州立大学 HBCU 卓越研究和 EPSCoR 区域外展研讨会 (HERO-ASU)
- 批准号:
2404231 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
RET Site: Engaging and Training Alabama STEM Teachers in Sensing Technologies
RET 网站:让阿拉巴马州 STEM 教师参与传感技术并对其进行培训
- 批准号:
2302144 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Equipment: Facilitating Optical X-Ray Techniques for Research and Organized Training at Alabama State University (FOXTROT-ASU)
设备: 阿拉巴马州立大学 (FOXTROT-ASU) 促进光学 X 射线技术研究和组织培训
- 批准号:
2324575 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
NRT: Alabama Collaborative for Contemporary Education in Precision Timing (ACCEPT)
NRT:阿拉巴马州精密计时当代教育合作组织 (ACCEPT)
- 批准号:
2244074 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Standard Grant
Louis Stokes Renewal STEM Pathways and Research Alliance: Alabama LSAMP
Louis Stokes 更新 STEM 途径和研究联盟:阿拉巴马州 LSAMP
- 批准号:
2308715 - 财政年份:2023
- 资助金额:
$ 24.91万 - 项目类别:
Continuing Grant














{{item.name}}会员




