RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region

RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划

基本信息

  • 批准号:
    2338987
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The integration of artificial intelligence (AI) into advanced manufacturing has promising potential to revolutionize productivity and generate new jobs in smart manufacturing. There is an urgent need to investigate "what to teach" and "how to teach" AI in order to prepare future workforce with the necessary AI skills, as most K-12 educators and schools lack the knowledge and experience to teach students AI skills for smart manufacturing. This project will initiate an age-appropriate career-driven AI educational program for high-school students and evaluate its effectiveness. Education researchers will develop manufacturing specific AI learning modules to teach high school students about Fused Filament Fabrication (FFF), the most accessible additive manufacturing (AM) process, that will be equipped with automatic real-time process monitoring, analysis and communication. Fifty rising high-school students from underserved school districts across the Black Belt region and rural low-income areas of Alabama, where 52.2% are African Americans and the median household annual income is $27,130, will be recruited to participate in a one-week summer camp. This AI in smart manufacturing education program will employ project-based learning to stimulate broader career interest among a diverse range of students. The proposal was received in response to the Dear Colleague Letter (DCL): "Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097)" and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.The goal of the project is investigating age-appropriate equitable AI learning and inclusive teaching in the context of smart manufacturing. The research plan includes: (1) identify AI knowledge and skills required in smart manufacturing for high-school students; (2) experiment with project-based learning (PBL) pedagogy to prepare students to explore smart manufacturing and provide professional training in AI and smart manufacturing for teachers; (3) use a mixed method design with qualitative interview and worksheet data as well as quantitative pre-post knowledge assessment to evaluate the effectiveness of the proposed AI educational intervention. In addition to the fifty underserved students, ten high-school teachers will be recruited to receive a three-day intensive professional training before the student summer camp and will facilitate the summer camp activities. These teachers will also develop a lesson plan for continuing the AI educational intervention at their respective schools. The resulting deliverables include the AI learning modules and the smart manufacturing centered PBL pedagogy. The experimental process in developing this AI intervention can be adapted for other AI educational efforts for underserved high schools. The insights gained on the effectiveness of the proposed AI educational intervention will provide valuable lessons for advancing age-appropriate, future career-oriented, and equitable AI education across different K-12 AI educational programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)与先进制造业的融合具有革命性的潜力,可以在智能制造中创造新的就业机会。迫切需要研究“教什么”和“如何教”人工智能,以便为未来的劳动力提供必要的人工智能技能,因为大多数K-12教育工作者和学校缺乏知识和经验来教授学生智能制造的人工智能技能。该项目将为高中生启动一个适合年龄的职业驱动的人工智能教育计划,并评估其有效性。教育研究人员将开发特定于制造业的人工智能学习模块,向高中生传授熔融纤维制造(FFF),这是最容易获得的增材制造(AM)工艺,将配备自动实时过程监控,分析和通信。来自黑带地区和亚拉巴马农村低收入地区的50名高中生将被招募参加为期一周的夏令营,其中52.2%是非洲裔美国人,家庭年收入中位数为27,130美元。智能制造教育计划中的人工智能将采用基于项目的学习,以激发各种学生更广泛的职业兴趣。该提案是对亲爱的同事信(DCL)的回应:“在正式和非正式环境中快速加速K-12教育中的人工智能研究(NSF 23-097)”,并由学生和教师创新技术经验(ITEST)计划资助,该计划支持建立对实践,计划要素,有助于增加学生对科学,技术,工程,和数学(STEM)和信息和通信技术(ICT)的职业。该项目的目标是调查年龄-在智能制造的背景下,适当的公平人工智能学习和包容性教学。研究计划包括:(1)为高中生确定智能制造所需的人工智能知识和技能;(2)尝试基于项目的学习(PBL)教学法,为学生探索智能制造做好准备,并为教师提供人工智能和智能制造的专业培训;(3)采用定性访谈和工作表数据以及定量预处理的混合方法设计,事后知识评估,以评估拟议的人工智能教育干预措施的有效性。除了50名服务不足的学生外,还将招募10名高中教师,在学生夏令营前接受为期三天的强化专业培训,并为夏令营活动提供便利。这些教师还将制定一个课程计划,以便在各自的学校继续进行人工智能教育干预。由此产生的可交付成果包括人工智能学习模块和以智能制造为中心的PBL教学法。开发这种人工智能干预的实验过程可以适用于服务不足的高中的其他人工智能教育工作。对人工智能教育干预措施有效性的深入了解,将为不同K-12人工智能教育项目提供与年龄相适应、面向未来职业和公平的人工智能教育提供宝贵的经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Liu其他文献

span style=font-family:quot;Times New Romanquot;,quot;serifquot;;font-size:12pt;Polymer-derived yttrium silicate coatings on 2D C/SiC composites/span
二维 C/SiC 复合材料上聚合物衍生的硅酸钇涂层
[Clinical study on combination of acupuncture, cupping and medicine for treatment of fibromyalgia syndrome].
针、拔罐、药物联合治疗纤维肌痛综合征的临床研究[J].
kNN Research based on Multi-Source Query Points on Road Networks
基于路网多源查询点的kNN研究
Electrochemical and Plasmonic Photochemical Oxidation Processes of para-Aminothiophenol on a Nanostructured Gold Electrode
纳米结构金电极上对氨基苯硫酚的电化学和等离子体光化学氧化过程
  • DOI:
    10.1021/acs.jpcc.1c05928
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui-Yuan Peng;De-Yin Wu;Yuan-Hui Xiao;Huan-Huan Yu;Jia-Zheng Wang;Jian-De Lin;Rajkumar Devasenathipathy;Jia Liu;Pei-Hang Zou;Meng Zhang;Jian-Zhang Zhou;Zhong-Qun Tian
  • 通讯作者:
    Zhong-Qun Tian
Indirect Effects of Fluid Intelligence on Creative Aptitude Through Openness to Experience
流体智力通过开放体验对创造性能力的间接影响
  • DOI:
    10.1007/s12144-017-9633-5
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiqin Liu;Ling Liu;Zhencai Chen;Yiying Song;Jia Liu
  • 通讯作者:
    Jia Liu

Jia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Liu', 18)}}的其他基金

CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
  • 批准号:
    2134689
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    1943226
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻矮化卷叶基因DRL的图位克隆与作用机理研究
  • 批准号:
    31501377
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RAPID: DRL AI: Understanding Perceptions and Use of AI in K-12 Education Using a Nationally Representative Sample
RAPID:DRL AI:使用全国代表性样本了解 K-12 教育中 AI 的认知和使用
  • 批准号:
    2334172
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: A Community-Inclusive AI Chatbot to Support Teachers in Developing Culturally Focused and Universally Designed STEM Activities
RAPID:DRL AI:社区包容性 AI 聊天机器人,支持教师开展以文化为中心且通用设计的 STEM 活动
  • 批准号:
    2334631
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Unlocking the Potential of Generative AI for Equity and Access in Robotics Education
RAPID:DRL AI:释放生成式 AI 的潜力,促进机器人教育的公平和访问
  • 批准号:
    2341190
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Non-digital Hands-on AI Learning Resources for Middle-School Students
RAPID:DRL AI:面向中学生的非数字实践人工智能学习资源
  • 批准号:
    2343693
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID DRL AI: Empowering Teachers to Collaborate with Generative AI for Developing High-Quality STEM Learning Resources
RAPID DRL AI:让教师能够与生成式 AI 协作开发高质量的 STEM 学习资源
  • 批准号:
    2335975
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: The Development of a Digital Platform for Evaluating and Using AI-Generated Content for Academic Purposes
RAPID:DRL AI:开发用于评估和使用人工智能生成内容用于学术目的的数字平台
  • 批准号:
    2337969
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
  • 批准号:
    2332306
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Constructing Understandings of Generative AI and Machine Learning with High School Youth
RAPID:DRL AI:与高中生一起构建对生成式 AI 和机器学习的理解
  • 批准号:
    2335926
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: DRL AI: Scaffolding Automated Feedback for Teachers
RAPID:DRL AI:为教师提供自动反馈的脚手架
  • 批准号:
    2337772
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Market Assessment for Deep Reinforcement Learning (DRL) based Shape Optimization for Heat Exchangers
基于深度强化学习 (DRL) 的热交换器形状优化的市场评估
  • 批准号:
    576544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了