A Clinical Surveillance Software Platform for Early Identification of Severe Asynchrony in Mechanically Ventilated Patients in the Intensive Care Unit
用于早期识别重症监护病房机械通气患者严重不同步的临床监测软件平台
基本信息
- 批准号:10079676
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAirAlgorithmsBehavior monitoringCaringClinicalComputer softwareCritical CareDataDetectionEarly identificationEnsureEthicsExhalationGoalsHealth PersonnelIntensive Care UnitsJudgmentLungMechanical ventilationMechanicsMonitorPatient MonitoringPatientsPhasePlant RootsPrevalenceProviderResearch PersonnelSensitivity and SpecificitySpeedStressSystemTabletsTechnologyTestingTimeVentilatorWorkbasecare costsdashboardfightingimprovedindexingmortalityprototyperespiratoryrespiratory assistsimulationtool
项目摘要
Severe patient-ventilator asynchrony affects 12-30% of ventilated patients in the intensive care unit (ICU) or
approximately 200,000-500,000 patients annually in the US. Many patients will become asynchronous with the
ventilator and will be attempting to exhale when the machine (ventilator) is attempting to move air into the
lungs, and vice versa. Severe asynchrony, where asynchrony index (quantifying the fraction of asynchronous
breaths) exceeds 10%, is associated with a 5x increase in ICU mortality and was associated with 6 extra days
of mechanical ventilation. In other words, in the US, patients with severe asynchrony incur an extra $5-12
billion of critical care costs. Currently, no commercially available software exists to detect asynchrony in real-
time. The first step needed to address the problem of asynchrony is recognition, and unfortunately, due to
constraints on healthcare providers, patients may be “fighting the ventilator” well before recognition by the
providers. In addition, studies show that clinicians have a poor sensitivity in detecting asynchrony using
waveform analysis. Our overall goal is to assist respiratory therapists in identifying episodes of severe
asynchrony earlier and improving their accuracy and speed in interpreting waveforms, which are major steps
required to address asynchrony. Our specific aims are: 1. Developing and Testing a Clinical Surveillance
Dashboard for Respiratory Therapists to Monitor Asynchrony in Multiple Patients. In this specific aim,
we will extend the Syncron-ETM software to analyze data from multiple ventilators. In addition, we will perform a
simulation study with real patient data, where two respiratory therapists will assist in a proof-of-concept clinical
utility testing. In Scenario A, the respiratory therapists will monitor 10 patients where the asynchrony
information is provided. In Scenario B, another set of 10 patients (with similar asynchrony behavior) are
monitored without any information on asynchrony. Respiratory therapists are asked to identify episodes of
severe asynchrony (asynchrony index>10%) for a period of more than 5 minutes. In the end, we will compare
the number of correctly detected episodes of severe asynchrony (comparing sensitivity and specificity) and
timing of such detections. 2. Developing the Capability to Assist Respiratory Therapists in Improving
Waveform Interpretation. In this specific aim, we propose to develop a capability to assist respiratory
therapists in the interpretation of waveforms more accurately and rapidly. In order to ensure clinical adoption,
we intend to avoid a “black box” approach. Specifically, we intend to provide adequate information to the user
and allow the user to make the ultimate decision regarding asynchrony by “auditing” the system. First, we will
add a capability to visually annotate waveforms and highlight detected “landmarks”. Next, we will perform a
simulation study based on previously collected patient data, where two respiratory therapists will review
waveforms in two scenarios to detect asynchrony based on their clinical judgement. We will compare the
sensitivity and specificity of asynchrony detection and time to completion between the two scenarios.
严重的患者访问者异步会影响重症监护病房(ICU)或
在美国,每年约有200,000-500,000名患者。许多患者会因
呼吸机,将试图在机器(呼吸机)试图将空气移入的时候呼气
肺,反之亦然。严重异步,其中异步指数(量化异步的分数
呼吸)超过10%,与ICU死亡率增加5倍有关,并与6天相关
机械通气。换句话说,在美国,患有严重异步的患者会增加5-12美元
十亿个重症监护费用。目前,尚无商业可用的软件来检测现实中的异步
时间。解决异步问题所需的第一步是识别,不幸的是,由于
对医疗保健提供者的限制,患者可能会在认可之前就“与呼吸机作斗争”
提供者。此外,研究表明,临床医生在检测异步的敏感性较差
波形分析。我们的总体目标是协助呼吸治疗师确定严重的发作
异步提前并提高其在解释波形方面的准确性和速度,这是主要步骤
需要解决异步。我们的具体目的是:1。开发和测试临床监测
用于呼吸治疗师的仪表板,以监测多名患者的异步。在这个特定目标中
我们将扩展Syncron-ETM软件以分析来自多个呼吸机的数据。此外,我们将执行
使用真实患者数据的模拟研究,其中两名呼吸治疗师将有助于概念证明临床证明
实用程序测试。在方案A中,呼吸治疗师将监测10例异步的患者
提供了信息。在情况B中,另一组10例患者(异步行为相似)是
没有任何有关异步信息的信息。要求呼吸治疗师确定
严重的异步(异步指数> 10%)超过5分钟。最后,我们将比较
严重异步(比较灵敏度和特异性)的正确检测到的发作的数量
这种检测的时间。 2。开发协助呼吸治疗师改善的能力
波形解释。在这个具体目的中,我们建议开发一种能力来协助呼吸道
在波形的解释中,治疗师更准确,快速地解释。为了确保临床采用,
我们打算避免使用“黑匣子”方法。具体来说,我们打算向用户提供足够的信息
并允许用户通过“审核”系统做出有关异步的最终决定。首先,我们会的
添加视觉注释波形并突出显示的“地标”的功能。接下来,我们将执行
基于先前收集的患者数据的仿真研究,其中两名呼吸治疗师将审查
波形在两种情况下根据其临床判断检测异步。我们将比较
两种情况之间的异步检测和完成时间的灵敏度和特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Behnood Gholami其他文献
Behnood Gholami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Behnood Gholami', 18)}}的其他基金
Noncontact Remote Monitoring for the Detection of Opioid-Induced Respiratory Depression
非接触式远程监测检测阿片类药物引起的呼吸抑制
- 批准号:
10684530 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Using Machine Learning and Blockchain Technology to Reduce Drug Diversion in Hospitals
使用机器学习和区块链技术减少医院的药物转移
- 批准号:
10761130 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Leveraging COVID-19 to modernize depression care for VA primary care populations
利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化
- 批准号:
10636681 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Efficacy and implementation of exercise-based smoking cessation treatment for adults with high anxiety sensitivity
以运动为基础的戒烟治疗对高焦虑敏感性成人的疗效和实施
- 批准号:
10660767 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Team Support to Improve Glycemic Control Using CGM in Diverse Populations (TEAM CGM)
团队支持在不同人群中使用 CGM 改善血糖控制 (TEAM CGM)
- 批准号:
10659721 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别: