Single cell quantification of genomic instability in cancer as a determinant of therapeutic response
癌症基因组不稳定性的单细胞定量作为治疗反应的决定因素
基本信息
- 批准号:10115351
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-03 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AftercareAllelesAutomobile DrivingAwardBRCA1 geneBRCA2 geneBioinformaticsBiologicalBiologyBreast Epithelial CellsCCNE1 geneCancer BiologyCancer PatientCell LineCellsChromosomal GainChromosomal LossCollectionCommunicationComputer ModelsCopy Number PolymorphismDNADNA DamageDNA RepairDNA Repair PathwayDataDefectElementsEnvironmentEvolutionExhibitsFluorescent in Situ HybridizationGene ExpressionGenetic HeterogeneityGenomeGenomic InstabilityGenomicsHeterogeneityImmersionKnowledgeLeadershipLengthLesionLoss of HeterozygosityMachine LearningMaintenanceMalignant NeoplasmsMalignant neoplasm of ovaryMentorsMethodsModelingMutagenesisNeoplasm MetastasisOncogenesPathway interactionsPatternPhasePhenotypePlayPopulationPrediction of Response to TherapyPrimary NeoplasmProcessPrognosisPropertyRelapseResearchResearch PersonnelResearch ProposalsResistance developmentResolutionRoleRouteSamplingSerousSoftware EngineeringTP53 geneTechniquesTestingTherapeuticTrainingTranslatingTranslational ResearchTreatment outcomecancer cellcancer genomecancer genomicscancer typecareerchromosome missegregationdesigneffective therapyextrachromosomal DNAfitnessgenome sequencinggenomic aberrationsgenotoxicityimprovedinsightmutantnovel strategiespatient derived xenograft modelpatient responseprofiles in patientsprogramsrepairedresponsesingle cell technologysingle-cell RNA sequencingskillstheoriestooltreatment comparisontreatment responsetumortumor heterogeneitytumor progressionwhole genome
项目摘要
PROJECT ABSTRACT
Tumor genetic heterogeneity is an extensive feature of cancer biology and underlies patient response to
therapy. One aspect of tumor heterogeneity that has been difficult to study is heterogeneity of large genomic
aberrations, including high level amplifications a few megabases in size, whole or partial chromosomal gains
and losses and whole genome duplications. This is because identifying these aberrations in subclonal
populations (present in <100% of cells) is extremely challenging when sequencing tumors in “bulk”. Single cell
genomics however, can resolve these alterations at cellular resolution enabling precise quantification of
heterogeneity at these genomic length scales. To comprehensively investigate the extent and consequences of
intra-tumor heterogeneity generated by these types of genomic aberrations I will leverage recent advances in
robust highly scalable single cell whole genome sequencing and my expertise in computational modeling. In
the K99 phase of the award I will investigate how differences in the ability of cells to repair their genomes
results in different patterns of genetic heterogeneity, and how such cellular diversity can cause differential
response to treatment in high grade serous ovarian cancer, a cancer driven by genomic instability. In the
independent phase of the award I will focus on heterogeneity and evolutionary dynamics of extra-chromosomal
DNA, small circular pieces of DNA that cause high level amplification of oncogenes. The results of this
proposal have the potential to give fundamental new insight into the biology of genomic instability and enable
better predication of patient response to therapy and identification of therapeutic vulnerability that may be
exploited. This proposal also describes a training plan to advance my career to an independent investigator,
combining computational modeling inspired by evolutionary theory, machine learning and high-resolution
genomics to quantify cancer evolution in order to better predict patient response to therapy and uncover the
mechanisms driving cancer progression. During the K99 phase I will be supported by an interdisciplinary team
of experts in single cell genomics, cancer evolution, ovarian cancer biology and genomic instability. I will
broaden my knowledge of machine learning, genomic instability and scalable bioinformatics software
engineering and improve my communication and leadership skills vital for my transition.
项目摘要
肿瘤遗传异质性是癌症生物学的广泛特征,并且是患者对肿瘤治疗的反应的基础。
疗法肿瘤异质性的一个方面一直难以研究,这是大基因组异质性。
畸变,包括几兆碱基的高水平扩增,整个或部分染色体增益
以及整个基因组的复制。这是因为在亚克隆中鉴定这些畸变
当对“批量”肿瘤进行测序时,细胞群(存在于<100%的细胞中)是极其具有挑战性的。单细胞
然而,基因组学可以在细胞分辨率下解决这些改变,从而能够精确定量
在这些基因组长度尺度上的异质性。全面调查的程度和后果,
由这些类型的基因组畸变产生的肿瘤内异质性,我将利用最近的进展,
强大的高度可扩展的单细胞全基因组测序和我在计算建模方面的专业知识。在
在K99阶段的奖项,我将研究如何在细胞修复其基因组的能力的差异,
导致不同的遗传异质性模式,以及这种细胞多样性如何导致差异
高级别浆液性卵巢癌的治疗反应,这是一种由基因组不稳定性驱动的癌症。在
该奖项的独立阶段,我将专注于异质性和进化动力学的染色体外
DNA,小的环状DNA片段,导致癌基因的高水平扩增。的结果
该提案有可能为基因组不稳定性的生物学提供基本的新见解,
更好地预测患者对治疗的反应,并识别可能
被剥削这份提案还描述了一个培训计划,以促进我的职业生涯,以一个独立的调查员,
结合受进化理论启发的计算建模,机器学习和高分辨率
基因组学来量化癌症演变,以便更好地预测患者对治疗的反应,并揭示
推动癌症进展的机制。在K99阶段,我将得到跨学科团队的支持
单细胞基因组学、癌症进化、卵巢癌生物学和基因组不稳定性方面的专家。我会
拓宽了我在机器学习、基因组不稳定性和可扩展生物信息学软件方面的知识
工程和提高我的沟通和领导能力对我的过渡至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Williams其他文献
Marc Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Williams', 18)}}的其他基金
Single cell quantification of genomic instability in cancer as a determinant of therapeutic response
癌症基因组不稳定性的单细胞定量作为治疗反应的决定因素
- 批准号:
10357908 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 9.98万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别: