Mechanisms for invariance in auditory cortex: Investigations with marmoset electrophysiology
听觉皮层不变性的机制:狨猴电生理学研究
基本信息
- 批准号:10115690
- 负责人:
- 金额:$ 2.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-19 至 2021-07-16
- 项目状态:已结题
- 来源:
- 关键词:Acoustic NerveAddressAirAlgorithmsAreaAttentionAuditoryAuditory ProsthesisAuditory areaAuditory systemBasic ScienceBrainCallithrixClinicalCodeCoffeeComputer ModelsDataData AnalysesDevelopmentElectrophysiology (science)EnvironmentFunctional Magnetic Resonance ImagingGoalsGrainHearingHearing AidsHumanImpaired cognitionIndividualInsectaInvestigationMeasuresMicroelectrodesModelingNeuronsNoisePatternPerformancePhysiologicalPopulationPresbycusisPrimatesProcessPropertyQuality of lifeRainResearchSiliconSourceStimulusStructureTechniquesTextureTimeTrainingWorkalgorithm trainingbasedeep learningdeep neural networkexperienceexperimental studyhearing impairmentimprovedinterestneural circuitneural prosthesisneuromechanismprogramsreconstructionrelating to nervous systemresponsesignal processingsocialsoundtemporal measurement
项目摘要
Project Summary
Listening in noise is a core problem in everyday hearing. Sound sources of interest routinely occur amid
irrelevant distractors, as when you talk with someone in a bustling coffee shop. This background “noise”
distorts the pattern of spikes in the auditory nerve, often to a profound degree. Thus, to recognize sources of
interest, the auditory system must somehow separate or suppress the effects of the background. Typical
human hearing is remarkably noise-robust, but listeners with age-related hearing loss or other forms of
impaired hearing struggle in noisy environments – and are not much helped by contemporary hearing aids.
Previous work on the neural basis of noise robustness has typically employed simple, synthetic noise sources,
which lack the structure present in real-world sounds, and this work has focused on subcortical regions or on
primary auditory cortex. Reasoning that real-world conditions might necessitate more complicated solutions, in
the applicant's doctoral work, he considered everyday sources of noise, and leveraged the large-scale
coverage afforded by fMRI to examine noise robustness throughout human auditory cortex. Real-world
“background noise” was operationalized as a natural sound with statistical properties that are stable over time
(i.e., are stationary), conveying little new information about the world (e.g., swamp insects, an air conditioner,
rain on pavement). The applicant measured fMRI responses in human listeners to a broad set of natural
sounds presented in quiet, as well as embedded in the real-world background noises. Primary auditory cortical
responses were substantially altered by the background, but non-primary responses were substantially more
robust. This effect was not seen for simple synthetic backgrounds as had been used in previous work,
suggesting that becoming robust to real-world background noises require different mechanisms.
The applicant's thesis work demonstrates where noise invariance arises, but understanding how will require
data with finer spatial and temporal resolution, and thus the proposed postdoctoral research will consist of
training in single-unit electrophysiology using marmosets. Aim 1A builds on previous work examining single-
unit noise robustness in artificial conditions, extending such work to real-world noise. Aim 1B leverages texture
models to probe what aspects of real-world backgrounds disrupt the encoding of foregrounds. Aim 2A deploys
linear reconstruction techniques to probe population representations. Aim 2B involves optimizing deep neural
networks for noise invariance tasks, and using them as an encoding model to predict single-unit responses.
Furthermore, such networks will be deployed as nonlinear decoding algorithms, reconstructing stimuli from
neuronal populations. Throughout all aims, the work will characterize neuronal responses in non-primary
areas, and in particular in parabelt, which is understudied in primates. The proposed work may enable
improvements in hearing aid algorithms or neural prosthetics. Lastly, this training will lay the groundwork for
the applicant's long-term goal of developing a marmoset model for hearing loss.
项目摘要
在噪音中听是日常听力中的一个核心问题。感兴趣的声音来源通常出现在
无关紧要的干扰,就像你在熙熙攘攘的咖啡店里与某人交谈时一样。这个背景“噪音”
会扭曲听神经中的棘波模式,通常会严重扭曲。因此,要认识到
感兴趣,听觉系统必须以某种方式分离或抑制背景的影响。典型
人类的听力对噪音非常健壮,但与年龄相关的听力损失或其他形式的听力损失的听众
听力受损的人在嘈杂的环境中挣扎--现代助听器对他们帮助不大。
先前关于噪声稳健性的神经基础的工作通常使用简单的合成噪声源,
它们缺乏真实世界声音中存在的结构,这项工作主要集中在皮质下区域或
初级听觉皮质。推理现实世界的条件可能需要更复杂的解决方案,在
申请者的博士工作,他考虑了日常噪音的来源,并利用大规模
功能磁共振成像提供的覆盖范围,以检查整个人类听觉皮质的噪声稳健性。现实世界
背景噪声是一种具有随时间稳定的统计特性的自然声音
(即固定的),传达的关于世界的新信息很少(例如,沼泽昆虫,空调,
人行道上有雨)。申请人测量了人类听众对一组广泛的自然语言的fMRI反应
声音呈现在安静中,也嵌入在真实世界的背景噪音中。初级听觉皮质
回答被背景改变了很多,但非主要的反应要多得多
很健壮。这种效果在简单的合成背景中看不到,就像以前的工作中使用的那样,
这表明,要对真实世界的背景噪音保持稳健,需要不同的机制。
申请者的论文工作展示了噪声不变性出现的地方,但理解如何
更精细的空间和时间分辨率的数据,因此拟议的博士后研究将包括
使用绒毛进行单单位电生理学培训。目标1A建立在之前审查单一-
单位噪声在人工条件下的稳健性,将这种工作扩展到真实世界的噪声。AIM 1B利用纹理
模型来探索现实世界背景的哪些方面扰乱了前景的编码。AIM 2A部署
用于探测总体表示的线性重建技术。目标2B涉及优化深层神经
网络用于噪声不变性任务,并将其用作预测单个单位响应的编码模型。
此外,这种网络将被部署为非线性解码算法,从
神经元群。在所有的目标中,这项工作将描述非初级神经元的反应。
地区,特别是在帕拉贝尔特,这是在灵长类动物的研究不足。拟议的工作可能会使
助听器算法或神经假体的改进。最后,这次培训将为
申请人的长期目标是开发一种用于听力损失的绒猴模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander James Eaton Kell其他文献
Alexander James Eaton Kell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 2.38万 - 项目类别:
Research Grant