Automated Surveillance of Postoperative Infections (ASPIN)

术后感染自动监测 (ASPIN)

基本信息

  • 批准号:
    10117905
  • 负责人:
  • 金额:
    $ 39.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Our long term goal is to reduce postoperative infections. We will start by developing a system to accurately and completely identify their occurrence by applying machine learning algorithms to electronic health record (EHR) data. We will utilize a comprehensive audit and feedback system to create reports of risk-adjusted rates and specific details of postoperative infectious complications that are shared with surgeons and other healthcare providers to facilitate their awareness. We call this system the Automated Surveillance of Postoperative Infections (ASPIN). ASPIN will be piloted in the four major hospitals of the University of Colorado Health system (UCHealth) with a combined surgical volume of approximately 80,000 patients per year. We expect this will supersede the costly and laborious manual partial sampling of postoperative infectious complications which is current utilized by many hospitals. Specific Aim 1. Expand and enhance models for preoperative risk prediction and postoperative identification of surgical infections using EHR and ACS NSQIP data from patients who underwent operations at four UCHealth hospitals. Specific Aim 1a) Enhance previously-developed models for identification of postoperative infections by controlling Type-I errors via “knockoffs,” a recent statistical innovation for high dimensional model selection using false discovery rate correction. Specific Aim 1b) Deploy natural language processing methods using EHR text reports of these patients to identify additional indicators of postoperative infections and further refine the models. Specific Aim 1c) Create preoperative risk models for infection using EHR data - similar to the models implemented in the AHRQ-funded Surgical Risk Preoperative Assessment System - but that do not require additional data entry by the health care providers. Specific Aim 2. From the beginning of the study, develop ASPIN with input from an Advisory Committee composed of administrators and surgeons from all four UCHealth hospitals. Additional feedback from surgeons will be obtained through focus groups and semi-structured interviews at several steps of ASPIN development and implementation planning. Specific Aim 3. A pilot implementation of ASPIN will utilize the RE-AIM framework to guide and examine the preliminary effectiveness and feasibility of ASPIN at UCHealth. We will recruit 30 surgeon participants from all four UCHealth hospitals to use ASPIN, and we will evaluate the reach, effectiveness, adoption, and implementation of ASPIN. This research responds to AHRQ priorities by utilizing existing data to develop a learning health system with a distinct focus on improving surveillance and reporting of postoperative healthcare-associated infections.
项目总结/摘要 我们的长期目标是减少术后感染。我们将从开发一个系统开始, 通过将机器学习算法应用于电子健康记录, (EHR)数据我们将利用全面的审计和反馈系统来创建风险调整后的利率报告 以及与外科医生和其他医生共享的术后感染并发症的具体细节 医疗保健提供者以提高他们的意识。我们称之为自动监控系统 术后感染(ASPIN)。ASPIN将在北大四大医院试点 科罗拉多卫生系统(UCHealth),合并手术量约为80,000例患者/ 年我们希望这将取代昂贵和费力的人工部分采样的术后 目前许多医院都在使用感染性并发症。 具体目标1.扩大和加强术前风险预测和术后识别的模型 使用EHR和ACS NSQIP数据的外科感染患者在4岁时接受手术, UCHealth医院 具体目标1a)通过以下方式增强先前开发的用于识别术后感染的模型: 通过“仿制品”控制I型错误,这是最近用于高维模型选择的统计创新 使用错误发现率校正。 具体目标1b)使用这些患者的EHR文本报告部署自然语言处理方法, 确定术后感染的其他指标,并进一步完善模型。 具体目标1c)使用EHR数据创建术前感染风险模型-类似于模型 在AHRQ资助的手术风险术前评估系统中实施-但不要求 医疗保健提供者的额外数据输入。 具体目标2。从研究一开始,就利用咨询委员会的投入制定ASPIN 由加州大学健康中心四家医院的管理人员和外科医生组成。外科医生的其他反馈 在ASPIN开发的几个步骤中,将通过焦点小组和半结构化访谈获得 和实施规划。 具体目标3。ASPIN的试点实施将利用RE-AIM框架来指导和检查 ASPIN在UCHealth的初步有效性和可行性。我们将招募30名外科医生参与, 四家UCHealth医院使用ASPIN,我们将评估其覆盖范围,有效性,采用率, 实施ASPIN。 这项研究响应AHRQ的优先事项,利用现有的数据来开发一个学习健康系统 重点是改善术后医疗相关感染的监测和报告。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Louise Colborn其他文献

Kathryn Louise Colborn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathryn Louise Colborn', 18)}}的其他基金

Automated Surveillance of Postoperative Infections (ASPIN)
术后感染自动监测 (ASPIN)
  • 批准号:
    10448275
  • 财政年份:
    2020
  • 资助金额:
    $ 39.26万
  • 项目类别:
Automated Surveillance of Postoperative Infections (ASPIN)
术后感染自动监测 (ASPIN)
  • 批准号:
    10665638
  • 财政年份:
    2020
  • 资助金额:
    $ 39.26万
  • 项目类别:
Automated Surveillance of Postoperative Infections (ASPIN)
术后感染自动监测 (ASPIN)
  • 批准号:
    10254332
  • 财政年份:
    2020
  • 资助金额:
    $ 39.26万
  • 项目类别:
Palliative Care Research Cooperative Group (PCRC): Data, Informatics and Statistics Core
姑息治疗研究合作小组 (PCRC):数据、信息学和统计核心
  • 批准号:
    10438797
  • 财政年份:
    2013
  • 资助金额:
    $ 39.26万
  • 项目类别:
Palliative Care Research Cooperative Group (PCRC): Data, Informatics and Statistics Core
姑息治疗研究合作小组 (PCRC):数据、信息学和统计核心
  • 批准号:
    10207782
  • 财政年份:
    2013
  • 资助金额:
    $ 39.26万
  • 项目类别:

相似海外基金

Nuclear RNA surveillance and its connection to splicing quality control
核 RNA 监测及其与剪接质量控制的联系
  • 批准号:
    DP240102611
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Discovery Projects
Multiomics for the diagnostic and surveillance of infectious diseases
用于传染病诊断和监测的多组学
  • 批准号:
    502560
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
Active one health surveillance in LMICs to monitor and predict Antimicrobial Resistance Using Metagenomics (ALARUM)
在中低收入国家中开展主动单一健康监测,利用宏基因组学 (ALARUM) 监测和预测抗菌药物耐药性
  • 批准号:
    MR/Y034287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Research Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Research Grant
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
  • 批准号:
    10109956
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    EU-Funded
Secure Management of Internet of Things Data for Critical Surveillance
关键监控物联网数据的安全管理
  • 批准号:
    LP230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Linkage Projects
TEXAS: Towards next-generation AMR surveillance: Assessment of novel technologies with high-throughput and multiplexing potential
德克萨斯州:迈向下一代 AMR 监测:评估具有高通量和多重潜力的新技术
  • 批准号:
    MR/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Research Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
  • 批准号:
    MR/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Research Grant
Optimising disease surveillance to support decision-making
优化疾病监测以支持决策
  • 批准号:
    DP240102286
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Discovery Projects
Beyond Big Brother: New Narratives for Understanding Surveillance
超越老大哥:理解监控的新叙述
  • 批准号:
    DE240101246
  • 财政年份:
    2024
  • 资助金额:
    $ 39.26万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了