Synthesis and Exploration of Highly Fluorescent Thiazolothiazole Molecular Sensors for Probing Membrane Potential Dynamics
用于探测膜电位动力学的高荧光噻唑并噻唑分子传感器的合成与探索
基本信息
- 批准号:10114747
- 负责人:
- 金额:$ 46.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBrainCell Membrane StructuresCell membraneCell physiologyCellsCellular MembraneCharacteristicsChicagoCollaborationsCommunicationComplexDevelopmentDyesElectron TransportElectronicsElectronsExhibitsFeedbackFluorescenceFluorescent DyesFutureGenerationsGoalsGrantGuidelinesHela CellsImageImaging DeviceImaging TechniquesLaboratoriesLightMembrane PotentialsMolecularMolecular StructureNeurobiologyNeuronsOutcomes ResearchOxidation-ReductionPerformanceProcessPropertyReactionReaction TimeResearchResearch PersonnelRoleSignal TransductionSpectrum AnalysisStainsStructureStudentsSystemTestingThiazolesThickTimeTissuesTrainingTriplet Multiple BirthUniversitiesXenopus oocytebenzothiazolecytotoxicitydesigndipole momentelectric fieldexperiencefunctional groupgraduate studenthands on researchimprovedmembrane activitynext generationpatch clampquantumresponsesensorsmall moleculetooltwo-photonundergraduate studentvoltagevoltage sensitive dye
项目摘要
Project Abstract:
The long-term goal of this project is to understand how highly fluorescent and
photostable thiazolothiazole molecular sensors are impacted by changing electric
fields in cellular membranes. Tracking the changes in cell membrane potential
offers the potential to gain a deep understanding of complex and rapidly
changing cellular physiology. This is especially true for mapping the coordinated
activity of neurons in the brain. Fluorescent, small molecule voltage sensitive
dyes (VSDs) have greatly impacted this field, however there is still a great need
to develop new dyes with enhanced long wavelength emission for imaging in
thick tissues, improved photostability for long-term imaging, and improved cell
membrane voltage sensitivity. In this project, we propose the synthesis and
exploration of a unique and highly fluorescent thiazolo[5,4-d]thiazole dye system.
TTz dyes are the next generation of imaging tools because they exhibit high
photochemical stability, are easy to prepare/modify, show fast response times,
good cell membrane localization, negligible cytotoxicity, and are sensitive to
cellular membrane potential. We will conduct spectroscopic and electrochemical
characterizations to understand the role of various heterocyclic molecular
structures on the cell membrane localization and voltage sensing. We will
evaluate the voltage sensitivity performance of the dyes, which will provide
important feedback for tuning the photophysical properties to enhance their cell
membrane potential sensitivity.
项目摘要:
该项目的长期目标是了解如何高度荧光和
光稳定的噻唑并噻唑分子传感器受到改变的电
细胞膜中的电场跟踪细胞膜电位的变化
提供了深入了解复杂和快速
改变细胞生理学这对于绘制协调的
大脑中神经元的活动荧光,小分子电压敏感
染料(VSD)对这一领域产生了巨大的影响,但仍有很大的需求
开发具有增强的长波长发射的用于成像的新染料,
厚的组织,改善的长期成像的光稳定性,和改善的细胞
膜电压灵敏度在这个项目中,我们提出了合成和
探索独特的高荧光噻唑并[5,4-d]噻唑染料体系。
TTZ染料是下一代成像工具,因为它们表现出很高的成像性能。
光化学稳定性,易于制备/改性,显示快速响应时间,
良好的细胞膜定位,细胞毒性可忽略不计,并且对
细胞膜电位我们将进行光谱和电化学
表征,以了解各种杂环分子的作用
细胞膜上的结构定位和电压传感。我们将
评估染料的电压灵敏度性能,这将提供
重要的反馈,用于调整生物物理性质,以提高其细胞
膜电位敏感性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael G. Walter其他文献
Optical properties of photochromic thiazolothiazole-based polymer films determined by spectroscopic ellipsometry
通过椭圆偏振光谱法测定光致变色噻唑并噻唑基聚合物薄膜的光学性质
- DOI:
10.1117/12.3002623 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nuren Shuchi;Tyler J. Adams;V. Stinson;Micheal McLamb;Dustin Louisos;Glenn D. Boreman;Michael G. Walter;Tino Hofmann - 通讯作者:
Tino Hofmann
Michael G. Walter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael G. Walter', 18)}}的其他基金
Synthesis and Exploration of Highly Fluorescent Thiazolothiazole Molecular Sensors for Probing Membrane Potential Dynamics
用于探测膜电位动力学的高荧光噻唑并噻唑分子传感器的合成与探索
- 批准号:
10582132 - 财政年份:2020
- 资助金额:
$ 46.25万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Discovery Early Career Researcher Award
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Operating Grants
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Research Grant
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Fellowship
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Research Grant