High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
基本信息
- 批准号:10121604
- 负责人:
- 金额:$ 81.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAutopsyBehaviorBehavioralBehavioral ModelBiological AssayBiological ModelsBrainCellsCommunitiesDataDevelopmentDiseaseDisease modelDrug ScreeningGene ExpressionGenesGeneticGoalsHumanImageIndividualInheritedLeadLiteratureMethodsMissense MutationModelingMolecularMutationNeuronsOrthologous GenePathway AnalysisPathway interactionsPharmacologyPhenotypeProteinsPublishingRNA SplicingReagentReportingResourcesRiskRoleSeizuresSignal TransductionSleepSleep disturbancesSocial BehaviorSpliced GenesStartle ReactionSystemTestingTimeTissue-Specific Gene ExpressionTranslatingVariantVertebratesZebrafishautism spectrum disorderbasebehavior testbehavioral phenotypingbrain behaviorcohortcomorbiditycostcost effectivenessde novo mutationdisorder riskexperimental studygene functiongenetic risk factorgenetic testinggenome sequencinggenome wide association studygenome-widehabituationhigh throughput analysishigh throughput screeninghigh-throughput drug screeningimaging approachimprovedin vivomolecular phenotypemutantneurodevelopmentnovelnovel therapeuticsnull mutationrelative effectivenessrisk variantscreeningsocialtranscriptomicswhole genome
项目摘要
Autism spectrum disorder (ASD) is caused by both environmental and genetic factors, with the genetic
contribution estimated at 60-80%. Dozens of genes that increase risk for ASD have been identified, most based
on de novo mutations, but these mutations are predicted to account for only 15-20% of ASD cases. Thus, the
majority of the genetic contribution to ASD is predicted to result from common and rare inherited variation, but
few such genes have been identified. Recently, using whole genome sequencing, we reported genome wide
evidence for >60 ASD risk genes, 26 of them novel for ASD, with signals derived from inherited and de novo
protein truncating or missense mutations. The functions of most of these genes are unknown, so a crucial and
necessary next step is to explore their impact on neurodevelopment and neuronal function using a model
organism. The current pace of translating genetic risk factors into phenotypes, mechanisms and therapies is
limited in part by inefficiencies with in vivo mammalian model systems, which makes them impractical for creating
and behaviorally testing large numbers of mutant lines. Here, we leverage the zebrafish, which occupies a unique
niche as a vertebrate model with features amenable to both in vivo screening and mechanistic understanding,
including ex utero development, transparency, small size, rapid development, a conserved yet relatively simple
vertebrate brain, behaviors relevant to ASD, and cost-effectiveness relative to mammalian models. While the
zebrafish cannot recapitulate ASD and has limitations for modeling a human disorder, an emerging literature
supports the notion that it is a useful model to study the functions of genes that contribute to ASD risk. Rather
than assess ASD-risk genes one at a time, we will accelerate progress towards mechanistic understanding via
high-throughput assays and analyses. In Specific Aim 1 we will generate null mutations in the zebrafish orthologs
of 24 high confidence, novel, genome-wide significant ASD risk genes, and systematically test each mutant for
neurodevelopmental, behavioral, neuronal network, and transcriptomic phenotypes. In Specific Aim 2, we will
use transcriptomic analyses, at the whole brain and single cell levels, to integrate ASD risk genes into functional
networks, and test for convergence across genes and species, including ASD post mortem brain. We will also
test for functional associations among behavioral phenotypes that are often co-morbid in ASD, such as disrupted
sleep and social behavioral deficits. In Specific Aim 3 we will perform mechanistic studies to understand how
mutation of specific ASD-risk genes leads to phenotypes. This project will efficiently and cost-effectively create
and characterize vertebrate animal models for a large number of novel ASD risk genes. These animal models
will be a valuable resource for the community, particularly for large-scale in vivo drug screens to identify new
therapies for ASD.
自闭症谱系障碍(ASD)是由环境和遗传因素引起的,遗传因素
估计占60- 80%。已经确定了数十种增加ASD风险的基因,其中大部分基于
新生突变,但预计这些突变仅占ASD病例的15-20%。因此
预测ASD的大部分遗传贡献来自常见和罕见的遗传变异,但是
很少有这样的基因被鉴定出来。最近,利用全基因组测序,
有证据表明有超过60个ASD风险基因,其中26个是ASD的新基因,其信号来自遗传和新生
蛋白质截短或错义突变。这些基因中的大多数的功能是未知的,所以一个关键的,
必要的下一步是使用模型探索它们对神经发育和神经元功能的影响
有机体目前将遗传风险因素转化为表型、机制和治疗方法的速度是
部分受限于体内哺乳动物模型系统的效率低下,这使得它们对于创建
并对大量突变株系进行行为测试。在这里,我们利用斑马鱼,它占据了独特的
小生境作为具有适合于体内筛选和机理理解的特征的脊椎动物模型,
包括子宫外发育、透明、体积小、发育快、保守但相对简单,
脊椎动物大脑,与ASD相关的行为,以及相对于哺乳动物模型的成本效益。而
斑马鱼不能重现ASD,并且在模拟人类疾病方面存在局限性,
支持这是一个有用的模型来研究导致ASD风险的基因功能的观点。而
而不是一次评估一个ASD风险基因,我们将通过以下方式加速对机制的理解
高通量测定和分析。在特定目标1中,我们将在斑马鱼直系同源物中产生无效突变。
24个高置信度,新的,全基因组显著ASD风险基因,并系统地测试每个突变体,
神经发育、行为、神经元网络和转录组表型。在第二阶段,我们将
在全脑和单细胞水平上使用转录组学分析,将ASD风险基因整合到功能基因组中。
网络,并测试跨基因和物种的趋同性,包括ASD死后大脑。我们还将
测试行为表型之间的功能关联,这些行为表型通常在ASD中共病,例如破坏
睡眠和社会行为缺陷。在具体目标3中,我们将进行机制研究,以了解如何
特定ASD风险基因的突变导致表型。该项目将有效和具有成本效益地创造
并表征大量新型ASD风险基因的脊椎动物模型。这些动物模型
将是社区的宝贵资源,特别是用于大规模体内药物筛选以识别新的
ASD的治疗方法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL H GESCHWIND其他文献
DANIEL H GESCHWIND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL H GESCHWIND', 18)}}的其他基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
UCLA High-Throughput Neuropsychiatric Disorder Phenotyping Center (UCLA HT-NPC)
加州大学洛杉矶分校高通量神经精神疾病表型中心 (UCLA HT-NPC)
- 批准号:
10643541 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Uncovering the Genetic Mechanisms of the Chromosome 17q21.31 Tau Haplotype on Neurodegeneration Risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10789246 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10295518 - 财政年份:2021
- 资助金额:
$ 81.18万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10902613 - 财政年份:2021
- 资助金额:
$ 81.18万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10295512 - 财政年份:2021
- 资助金额:
$ 81.18万 - 项目类别:
High-throughput Modeling of Autism Risk Genes using Zebrafish - DIVERSITY SUPPLEMENT
使用斑马鱼对自闭症风险基因进行高通量建模 - 多样性补充
- 批准号:
10818861 - 财政年份:2020
- 资助金额:
$ 81.18万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10478187 - 财政年份:2020
- 资助金额:
$ 81.18万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10264069 - 财政年份:2020
- 资助金额:
$ 81.18万 - 项目类别:
Genetic Investigation of Minimally Verbal Children with ASD
患有自闭症谱系障碍(ASD)的最少语言儿童的基因调查
- 批准号:
10470956 - 财政年份:2019
- 资助金额:
$ 81.18万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 81.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists