High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
基本信息
- 批准号:10478187
- 负责人:
- 金额:$ 75.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAutopsyBehaviorBehavioralBehavioral ModelBiological AssayBiological ModelsBrainCellsCommunitiesDataDevelopmentDiseaseDisease modelDrug ScreeningGene ExpressionGenesGeneticGoalsHumanImageIndividualInheritedLeadLiteratureMethodsMissense MutationModelingMolecularMutationNeuronsOrthologous GenePathway AnalysisPathway interactionsPharmacologyPhenotypeProteinsPublishingRNA SplicingReagentReportingResourcesRiskRoleSeizuresSignal TransductionSleepSleep disturbancesSocial BehaviorSpliced GenesStartle ReactionSystemTestingTimeTissue-Specific Gene ExpressionTranslatingVariantVertebratesZebrafishautism spectrum disorderbasebehavior testbehavioral phenotypingbrain behaviorcohortcomorbiditycostcost effectivenessde novo mutationdisorder riskexperimental studygene functiongene networkgenetic risk factorgenetic testinggenome sequencinggenome wide association studygenome-widehabituationhigh throughput analysishigh throughput screeninghigh-throughput drug screeningimaging approachimprovedin vivomolecular phenotypemutantneurodevelopmentnovelnovel therapeutic interventionnovel therapeuticsnull mutationrelative effectivenessrisk variantscreeningsocialtranscriptomicstranslational goalwhole genome
项目摘要
Autism spectrum disorder (ASD) is caused by both environmental and genetic factors, with the genetic
contribution estimated at 60-80%. Dozens of genes that increase risk for ASD have been identified, most based
on de novo mutations, but these mutations are predicted to account for only 15-20% of ASD cases. Thus, the
majority of the genetic contribution to ASD is predicted to result from common and rare inherited variation, but
few such genes have been identified. Recently, using whole genome sequencing, we reported genome wide
evidence for >60 ASD risk genes, 26 of them novel for ASD, with signals derived from inherited and de novo
protein truncating or missense mutations. The functions of most of these genes are unknown, so a crucial and
necessary next step is to explore their impact on neurodevelopment and neuronal function using a model
organism. The current pace of translating genetic risk factors into phenotypes, mechanisms and therapies is
limited in part by inefficiencies with in vivo mammalian model systems, which makes them impractical for creating
and behaviorally testing large numbers of mutant lines. Here, we leverage the zebrafish, which occupies a unique
niche as a vertebrate model with features amenable to both in vivo screening and mechanistic understanding,
including ex utero development, transparency, small size, rapid development, a conserved yet relatively simple
vertebrate brain, behaviors relevant to ASD, and cost-effectiveness relative to mammalian models. While the
zebrafish cannot recapitulate ASD and has limitations for modeling a human disorder, an emerging literature
supports the notion that it is a useful model to study the functions of genes that contribute to ASD risk. Rather
than assess ASD-risk genes one at a time, we will accelerate progress towards mechanistic understanding via
high-throughput assays and analyses. In Specific Aim 1 we will generate null mutations in the zebrafish orthologs
of 24 high confidence, novel, genome-wide significant ASD risk genes, and systematically test each mutant for
neurodevelopmental, behavioral, neuronal network, and transcriptomic phenotypes. In Specific Aim 2, we will
use transcriptomic analyses, at the whole brain and single cell levels, to integrate ASD risk genes into functional
networks, and test for convergence across genes and species, including ASD post mortem brain. We will also
test for functional associations among behavioral phenotypes that are often co-morbid in ASD, such as disrupted
sleep and social behavioral deficits. In Specific Aim 3 we will perform mechanistic studies to understand how
mutation of specific ASD-risk genes leads to phenotypes. This project will efficiently and cost-effectively create
and characterize vertebrate animal models for a large number of novel ASD risk genes. These animal models
will be a valuable resource for the community, particularly for large-scale in vivo drug screens to identify new
therapies for ASD.
自闭症谱系障碍(ASD)是由环境和遗传因素引起的,遗传因素
贡献估计为60-80%。已经确定了增加增加ASD风险的数十个基因,大多数基于
关于从头突变,但预计这些突变仅占ASD病例的15-20%。因此,
预计大多数对ASD的遗传贡献是由常见和罕见的遗传变异引起的,但
很少有这样的基因被鉴定出来。最近,使用整个基因组测序,我们报道了基因组范围
> 60个ASD风险基因的证据,其中26个是ASD的新颖的,其信号来自遗传和从头开始
蛋白质截断或错义突变。大多数这些基因的功能都是未知的,因此是至关重要的
下一步的必要下一步是使用模型探索其对神经发育和神经元功能的影响
生物。当前将遗传危险因素转化为表型,机制和疗法的速度是
一部分受体内哺乳动物模型系统效率低下的限制,这使得它们在创建中不切实际
并在行为上测试大量突变线。在这里,我们利用斑马鱼,它占据了独特
利基作为一种脊椎动物模型,具有适合体内筛查和机械理解的特征,
包括前子宫开发,透明度,小规模,快速发展,保守但相对简单的
脊椎动物的大脑,与ASD相关的行为以及与哺乳动物模型相关的成本效益。而
斑马鱼不能概括ASD,并且对建模人类疾病有局限性,这是一种新兴文献
支持以下观点:研究有助于ASD风险的基因功能是一个有用的模型。相当
比一次评估ASD风险基因一个人,我们将通过
高通量测定和分析。在特定目标1中,我们将在斑马鱼直系同源物中产生无效突变
24个高置信度,新型,全基因组明显的ASD风险基因,并系统地测试每个突变体的
神经发育,行为,神经元网络和转录组表型。在特定的目标2中,我们将
在整个大脑和单细胞水平上使用转录组分析将ASD风险基因整合到功能上
网络,以及跨基因和物种(包括ASD Mortem大脑)的收敛。我们也会
测试通常在ASD中合并的行为表型之间的功能关联,例如破坏
睡眠和社会行为缺陷。在特定目标3中,我们将进行机械研究,以了解如何
特定ASD风险基因的突变导致表型。该项目将有效地创建
并表征了大量新型ASD风险基因的脊椎动物模型。这些动物模型
对于社区而言,将是一个宝贵的资源,特别是对于大规模的体内药物屏幕来识别新的
ASD的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL H GESCHWIND其他文献
DANIEL H GESCHWIND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL H GESCHWIND', 18)}}的其他基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
UCLA High-Throughput Neuropsychiatric Disorder Phenotyping Center (UCLA HT-NPC)
加州大学洛杉矶分校高通量神经精神疾病表型中心 (UCLA HT-NPC)
- 批准号:
10643541 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
Uncovering the Genetic Mechanisms of the Chromosome 17q21.31 Tau Haplotype on Neurodegeneration Risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10789246 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10295518 - 财政年份:2021
- 资助金额:
$ 75.66万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10902613 - 财政年份:2021
- 资助金额:
$ 75.66万 - 项目类别:
Uncovering the genetic mechanisms of the Chromosome 17q21.31 Tau haplotype on neurodegeneration risk in FTD and PSP
揭示染色体 17q21.31 Tau 单倍型对 FTD 和 PSP 神经变性风险的遗传机制
- 批准号:
10295512 - 财政年份:2021
- 资助金额:
$ 75.66万 - 项目类别:
High-throughput Modeling of Autism Risk Genes using Zebrafish - DIVERSITY SUPPLEMENT
使用斑马鱼对自闭症风险基因进行高通量建模 - 多样性补充
- 批准号:
10818861 - 财政年份:2020
- 资助金额:
$ 75.66万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10121604 - 财政年份:2020
- 资助金额:
$ 75.66万 - 项目类别:
High-throughput modeling of autism risk genes using zebrafish
使用斑马鱼进行自闭症风险基因的高通量建模
- 批准号:
10264069 - 财政年份:2020
- 资助金额:
$ 75.66万 - 项目类别:
Genetic Investigation of Minimally Verbal Children with ASD
患有自闭症谱系障碍(ASD)的最少语言儿童的基因调查
- 批准号:
10470956 - 财政年份:2019
- 资助金额:
$ 75.66万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
Inflammatory stressors in serotonergic brainstem dysfunction and SIDS
血清素能脑干功能障碍和 SIDS 中的炎症应激源
- 批准号:
10659327 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
PREVENTING ALZHEIMER’S DISEASE-LIKE BRAIN PATHOLOGY IN HIV INFECTION BY TARGETING CCR5
通过靶向 CCR5 预防 HIV 感染中的阿尔茨海默病样脑部病变
- 批准号:
10700624 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别:
Altered microglia states and microglia-endothelial cell axis in relation to white matter disease progression in VCID
VCID 中小胶质细胞状态和小胶质细胞内皮细胞轴的改变与白质疾病进展相关
- 批准号:
10738860 - 财政年份:2023
- 资助金额:
$ 75.66万 - 项目类别: