Multi-omic 3D tissue maps for a Human BioMolecular Atlas

人类生物分子图谱的多组学 3D 组织图谱

基本信息

项目摘要

PROJECT ABSTRACT Spatially resolved molecular maps of mammalian organs hold significant promise in providing a deeper understanding of human organ functioning in health and disease states. Fundamental to this is an understanding how tissue organization impacts on the state of a cell and performance of its function. The overarching goal of the Human BioMolecular Atlas Program (HuBMAP) and specifically of Tissue Mapping Centers within the HuBMAP framework is to generate high-resolution three dimensional (3D) human tissue maps. Present state-of-the-art spatially-resolved tissue analysis assays (e.g. MERFISH, seq- FISH, imaging mass cytometry) utilize antibody-based or oligo probe-based approaches that require prior knowledge of the biomolecular targets to map, challenging the ability to characterize the terra incognita (i.e. the unknown) in a tissue mapping effort. Mass spectrometry (MS)-based omic mapping technologies enable unbiased detection and mapping of metabolites, lipids, and proteins (including post-translational modifications - PTMs) in situ in tissue samples with high-resolution and represents an excellent complement to highly multiplexed targeted approaches for spatially resolved tissue analysis. The overall objective of this application is to generate high-resolution, multi-omic, 3D biomolecular maps of non-diseased human organs. We will take a Google Maps-type approach with our mapping effort progressing in phases to generate reference maps at increasing resolution. First, single-cell or near-single-cell resolution MS-based mapping technologies will be used to provide an unbiased view of tissue molecular spatial architecture. Second, biomolecules of interest will be subsequently interrogated with highly multiplexed sub- cellular resolution spatial omics assays in a targeted fashion. Our focus will be on the pancreas, an essential organ important for several metabolic functions. Notably, the pancreas, despite its importance, is not one of the listed key tissues and organs currently being analyzed by the HuBMAP consortium further supporting the need to focus on this critical organ. We will employ high resolving power and high-resolution mass spectrometry-based molecular mapping platforms (LMD-nanoPOT-MS, MALDI-FTMS, nanoDESI-MS) for unbiased mapping of metabolites, lipids, and proteins (including PTMs such as phosphorylation). These MS assays will be complemented with powerful highly multiplexed targeted spatial omics assays (CODEX and NanoString GeoMx for protein and RNA respectively) and light sheet microscopy to generate high-resolution, multi-omics human tissue maps. The innovative spatially resolved multi-omic tissue maps generated will be unprecedented and the unique multi-omic datasets will provide many novel insights. The tissue mapping efforts will be supported by commercially available and open-source state-of-the-art 3D reconstruction software to create browsable 3D RNA/protein/PTM/lipid/metabolite maps of the pancreas. Undergirding the tissue characterization and 3D organ map reconstructions efforts will be a robust organ procurement, processing and distribution network. Specifically, we will: (1) Procure, process and distribute samples of normal pancreas from non-diseased donors through a robust procurement, processing, and distribution network. (2) Perform comprehensive high-resolution multi-omics tissue mapping through innovative and complementary platforms for unbiased and targeted analyses (that includes gene and protein expression, and PTM, metabolite and lipid abundances). (3) Establish browsable 3D multi-omics (RNA / protein / PTM / lipid / metabolite)-based maps of normal non-diseased pancreas; and to disseminate methods and tools to the HIVE and other TMCs.
项目摘要 哺乳动物器官的空间分辨分子图谱在提供更深入的研究方面具有重要前景 了解健康和疾病状态下的人体器官功能。做到这一点的根本是 了解组织组织如何影响细胞的状态及其功能的表现。 人类生物分子图谱计划 (HuBMAP) 特别是组织的总体目标 HuBMAP 框架内的测绘中心用于生成高分辨率三维 (3D) 人体组织图。目前最先进的空间分辨组织分析检测(例如 MERFISH、seq- FISH(成像质量细胞术)利用基于抗体或基于寡核苷酸探针的方法,需要事先 绘制生物分子目标的知识,挑战表征未知领域的能力(即 未知)在组织绘图工作中。基于质谱 (MS) 的组学作图技术使 代谢物、脂质和蛋白质(包括翻译后)的公正检测和绘图 修饰 - PTM)在组织样品中原位高分辨率,是一个极好的补充 用于空间分辨组织分析的高度多重靶向方法。 该应用程序的总体目标是生成高分辨率、多组学、3D 生物分子图 未患病的人体器官。我们将采用谷歌地图类型的方法来推进我们的地图工作 分阶段生成分辨率不断提高的参考图。一、单细胞或近单细胞分辨率 基于 MS 的绘图技术将用于提供组织分子空间的公正视图 建筑学。其次,感兴趣的生物分子随后将被高度多重的子系统询问。 以有针对性的方式进行细胞分辨率空间组学分析。我们的重点将是胰腺,这是一个重要的 对多种代谢功能很重要的器官。值得注意的是,尽管胰腺很重要,但它并不是 HuBMAP 联盟目前正在分析列出的关键组织和器官,进一步支持 需要关注这个关键器官。我们将采用高分辨率和高分辨率质量 基于光谱分析的分子作图平台(LMD-nanoPOT-MS、MALDI-FTMS、nanoDESI-MS) 代谢物、脂质和蛋白质(包括磷酸化等 PTM)的无偏图谱。这些MS 强大的高度多重靶向空间组学分析(CODEX 和 NanoString GeoMx(分别用于蛋白质和 RNA)和光片显微镜可生成高分辨率、 多组学人体组织图谱。生成的创新空间分辨多组学组织图将是 前所未有且独特的多组学数据集将提供许多新颖的见解。组织标测 这些努力将得到商用和开源的最先进 3D 重建的支持 用于创建可浏览的胰腺 3D RNA/蛋白质/PTM/脂质/代谢物图谱的软件。巩固 组织表征和 3D 器官图重建工作将是强有力的器官采购, 加工和分销网络。 具体来说,我们将: (1) 采购、处理和分发来自非患病者的正常胰腺样本 捐助者通过强大的采购、加工和分销网络。 (二) 全面开展 通过创新和互补的平台进行高分辨率多组学组织图谱,以实现公正 和针对性分析(包括基因和蛋白质表达、PTM、代谢物和脂质丰度)。 (3) 建立基于可浏览的3D多组学(RNA/蛋白质/PTM/脂质/代谢物)的正常图谱 未患病的胰腺;向 HIVE 和其他 TMC 传播方法和工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Paul Carson其他文献

James Paul Carson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Paul Carson', 18)}}的其他基金

Multi-omic 3D tissue maps for a Human BioMolecular Atlas
人类生物分子图谱的多组学 3D 组织图谱
  • 批准号:
    10259781
  • 财政年份:
    2020
  • 资助金额:
    $ 75.07万
  • 项目类别:
Data Analysis Core
数据分析核心
  • 批准号:
    10685588
  • 财政年份:
    2020
  • 资助金额:
    $ 75.07万
  • 项目类别:
Data Analysis Core
数据分析核心
  • 批准号:
    10118876
  • 财政年份:
    2020
  • 资助金额:
    $ 75.07万
  • 项目类别:
Data Analysis Core
数据分析核心
  • 批准号:
    10259783
  • 财政年份:
    2020
  • 资助金额:
    $ 75.07万
  • 项目类别:
An Interactive Volumetric Atlas of the Mouse Brain
小鼠大脑的交互式体积图谱
  • 批准号:
    7771686
  • 财政年份:
    2009
  • 资助金额:
    $ 75.07万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 75.07万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
    Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
  • 批准号:
    10699504
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
  • 批准号:
    10491642
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
  • 批准号:
    10782567
  • 财政年份:
    2023
  • 资助金额:
    $ 75.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了