Toward an accuracy-efficiency balanced model for modeling high intensity focused ultrasound

建立用于模拟高强度聚焦超声的精度-效率平衡模型

基本信息

  • 批准号:
    10115992
  • 负责人:
  • 金额:
    $ 31.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Abstract High intensity focused ultrasound (HIFU) has been heavily investigated over the past two decades for treating a wide range of diseases and medical conditions. As a non-invasive surgical modality that can reach deep tissues, HIFU has the potential to revolutionize therapy. A versatile and fast yet sufficiently accurate ultrasound numerical model is vital for HIFU. Such a numerical model could serve as a powerful platform for in-depth investigation of HIFU and as a springboard for clinical translation of HIFU techniques. Some specific applications include testing new sonication protocols, understanding the mechanism of certain HIFU techniques, and rapid treatment planning. Two common HIFU techniques exist: they are the thermal based HIFU technique and shock wave based HIFU technique. While the first type uses relatively low pressure continuous wave (CW) and primarily causes thermal coagulation, the second type uses high pressure shock wave pulses to cause mechanical fractionation of tissue. To this date, no model can efficiently and accurately model these two types of HIFU in three-dimensional (3D) large-scale, complex, heterogeneous biological tissue. In the proposed research, we shall address a longstanding need in the HIFU community for a novel, accuracy- efficiency balanced numerical model. In Aim 1, we shall create a versatile, accuracy-efficiency balanced algorithm for HIFU modeling. By considering tissue heterogeneities in the Westervelt equation, a modified wave- vector-frequency-domain (M-WVFD) method for predicting linear/nonlinear wave fields in arbitrarily heterogeneous media will be systematically investigated for the first time. The resulting model is expected to be at least two orders of magnitude faster than the state-of-the-art “accurate” models and still have high accuracy. In Aim 2, the M-WVFD method will be numerically and experimentally validated by investigating a variety of HIFU problems. The experiments will involve both phantom and ex-vivo human skulls in order to investigate wave propagation in weakly and strongly heterogeneous media. Aim 3 shall focus on software engineering, so that the developed algorithms can be integrated into an open-source software package and can be widely adopted by the HIFU community.
摘要 在过去的二十年里,高强度聚焦超声(HIFU)已经被大量研究用于治疗 广泛的疾病和医疗条件。作为一种可以到达深层组织的非侵入性手术方式, 高强度聚焦超声有可能彻底改变治疗方法。一个多功能和快速但足够准确的超声数值 模型是HIFU的关键。这种数值模式可以作为一个强大的平台,深入调查 作为HIFU技术临床转化的跳板。一些特定的应用包括测试 新的超声处理方案,理解某些HIFU技术的机制,以及快速治疗 规划 存在两种常见的HIFU技术:基于热的HIFU技术和基于冲击波的HIFU技术 法而第一种类型使用相对低压的连续波(CW),并且主要引起热 第二种类型使用高压冲击波脉冲来引起组织的机械分离。 到目前为止,没有模型可以在三维(3D)中有效和准确地对这两种类型的HIFU进行建模。 大规模、复杂、异质的生物组织。 在拟议的研究中,我们将解决HIFU社区长期以来对一种新颖、准确的 效率平衡数值模型在目标1中,我们将创建一个通用的,准确性和效率平衡的 算法进行HIFU建模。通过考虑Westerpyruvate方程中的组织不均匀性,提出了一种修正的波- 矢量频域(M-WVFD)方法预测线性/非线性波场, 将首次对非均匀介质进行系统研究。由此产生的模型预计将是 比现有技术的“精确”模型快至少两个数量级,并且仍然具有高精度。 在目标2中,将通过研究各种HIFU来数值和实验验证M-WVFD方法 问题实验将涉及体模和离体人类头骨,以研究波 在弱和强非均匀介质中的传播。目标3应侧重于软件工程, 开发的算法可以集成到一个开源软件包中,并可以被广泛采用, HIFU社区

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting Bone Marrow Damage in the Skull After Clinical Transcranial MRI-Guided Focused Ultrasound With Acoustic and Thermal Simulations.
  • DOI:
    10.1109/tmi.2020.2989121
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    McDannold N;White PJ;Cosgrove R
  • 通讯作者:
    Cosgrove R
mSOUND: An Open Source Toolbox for Modeling Acoustic Wave Propagation in Heterogeneous Media.
Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
Using Phase Data From MR Temperature Imaging to Visualize Anatomy During MRI-Guided Focused Ultrasound Neurosurgery.
  • DOI:
    10.1109/tmi.2020.3005631
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    McDannold N;Jason White P;Rees Cosgrove G
  • 通讯作者:
    Rees Cosgrove G
Simulation of the Second-Harmonic Ultrasound Field in Heterogeneous Soft Tissue Using a Mixed-Domain Method.
使用混合域方法模拟异质软组织中的二次谐波超声场。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yun Jing其他文献

Yun Jing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yun Jing', 18)}}的其他基金

3D Functional Photoacoustic Imaging of Human Brain with a Stretchable Ultrasound Matrix Array
使用可拉伸超声矩阵阵列对人脑进行 3D 功能光声成像
  • 批准号:
    10612652
  • 财政年份:
    2021
  • 资助金额:
    $ 31.91万
  • 项目类别:
3D Functional Photoacoustic Imaging of Human Brain with a Stretchable Ultrasound Matrix Array
使用可拉伸超声矩阵阵列对人脑进行 3D 功能光声成像
  • 批准号:
    10252441
  • 财政年份:
    2021
  • 资助金额:
    $ 31.91万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 31.91万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了