Regulation of Microtubule Dynamics and Organization During Cell Division

细胞分裂过程中微管动力学和组织的调节

基本信息

  • 批准号:
    10118298
  • 负责人:
  • 金额:
    $ 33.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Precise cell division is essential for life. Mistakes during this process lead to many diseases, including cancer. The mitotic spindle is the engine that moves chromosomes, and it therefore plays an essential role in ensuring that newly-born cells inherit a complete genetic blueprint. A key feature of the spindle is its bipolarity, a geometry that ensures bi-directional chromosome movements. Non-bipolar geometries, such as monopolarity or multipolarity, cause errors in chromosome segregation that are incompatible with life. Therefore, non-bipolar structures must be reorganized to be bipolar prior to the onset of the anaphase stage of mitosis. Spindle formation is a complex process that is mediated by many microtubule-associated proteins (MAPs) and molecular motors (i.e., kinesins and dynein). The mechanisms of spindle assembly can vary among organisms, and can show remarkable plasticity even within a single organism. The malleability of spindle assembly is derived from how MAPs and motor proteins engage each other, either directly or indirectly through a network of dynamic MTs. The sophisticated nature of these systems-level relationships has made it difficult to fully understand the mechanisms that drive spindle formation, despite decades of research. Our unique approach has been to isolate and characterize human cell lines that survive in the absence of the major spindle assembly pathway driven by the kinesin Eg5 in eukaryotes. Our work has taught us that human cells can assemble a proper mitotic spindle using an auxiliary pathway. Furthermore, we identified a kinesin (Kif15) that is essential for this alternate mechanism. Ongoing work in our lab has unveiled systems-level changes in cells that require Kif15 for cell division, motivating efforts to obtain a better understanding of how spindle motors function at a systems level within the spindle. In this renewal application, we will address two key questions: 1) How does Kif15 drive spindle assembly?; and 2) How is Kif15 activity regulated during cell division? This work will advance our understanding of spindle mechanics and have immediate relevance to the development of anti-mitotic chemotherapeutic strategies.
精确的细胞分裂对生命至关重要。这个过程中的错误会导致许多疾病,包括癌症。有丝分裂纺锤体是移动染色体的引擎,因此它在确保新生细胞继承完整的遗传蓝图方面起着至关重要的作用。纺锤体的一个关键特征是它的双极性,一种确保染色体双向运动的几何形状。非双极几何,如单极或多极,会导致染色体分离错误,这与生命是不相容的。因此,非双极结构必须在有丝分裂后期开始前重组为双极结构。纺锤体的形成是一个复杂的过程,由许多微管相关蛋白(MAPs)和分子马达(即运动蛋白和动力蛋白)介导。纺锤体组装的机制在不同的生物体中是不同的,甚至在一个生物体中也能表现出显著的可塑性。纺锤体组件的延展性源于map和运动蛋白如何通过动态mt网络直接或间接地相互作用。尽管经过数十年的研究,这些系统级关系的复杂性使得很难完全理解驱动纺锤体形成的机制。我们的独特方法是分离和表征真核生物中由驱动蛋白Eg5驱动的主要纺锤体组装途径缺失的人类细胞系。我们的工作告诉我们,人类细胞可以通过辅助途径组装合适的有丝分裂纺锤体。此外,我们发现了一种对这种替代机制至关重要的驱动蛋白(Kif15)。我们实验室正在进行的工作揭示了需要Kif15进行细胞分裂的细胞的系统水平变化,激励人们更好地了解纺锤体内纺锤体电机如何在系统水平上起作用。在这个更新申请中,我们将解决两个关键问题:1)Kif15如何驱动主轴装配?2)细胞分裂过程中Kif15活性是如何调控的?这项工作将促进我们对纺锤体力学的理解,并与抗有丝分裂化疗策略的发展直接相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryoma Ohi其他文献

Ryoma Ohi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryoma Ohi', 18)}}的其他基金

Regulation of microtubule dynamics during cell division
细胞分裂过程中微管动力学的调节
  • 批准号:
    8653578
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of microtubule dynamics during cell division
细胞分裂过程中微管动力学的调节
  • 批准号:
    8067120
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of microtubule dynamics during cell division
细胞分裂过程中微管动力学的调节
  • 批准号:
    8463559
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of Microtubule Dynamics and Organization During Cell Division
细胞分裂过程中微管动力学和组织的调节
  • 批准号:
    10473845
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of Microtubule Dynamics and Organization During Cell Division
细胞分裂过程中微管动力学和组织的调节
  • 批准号:
    9589090
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of microtubule dynamics during cell division
细胞分裂过程中微管动力学的调节
  • 批准号:
    7887170
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of microtubule dynamics during cell division
细胞分裂过程中微管动力学的调节
  • 批准号:
    9136596
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of microtubule dynamics during cell division
细胞分裂过程中微管动力学的调节
  • 批准号:
    8249404
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
Regulation of Microtubule Dynamics and Organization During Cell Division
细胞分裂过程中微管动力学和组织的调节
  • 批准号:
    10263378
  • 财政年份:
    2010
  • 资助金额:
    $ 33.9万
  • 项目类别:
MICROTUBULE END-BINDING PROTEINS IN MITOSIS
有丝分裂中的微管末端结合蛋白
  • 批准号:
    6385118
  • 财政年份:
    2000
  • 资助金额:
    $ 33.9万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了