Understanding the Mechanism and Preventing the Unique Neuropathology of Arginase Deficiency
了解精氨酸酶缺乏的机制并预防独特的神经病理学
基本信息
- 批准号:10080755
- 负责人:
- 金额:$ 34.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAcuteAddressAdoptionAnatomyAnimalsArginineBirthBrainBystander EffectCellsCerebral cortexCessation of lifeChronicClinicalClinical TrialsCongenital neurologic anomaliesCreatineDataDiseaseElectrophysiology (science)EnzymesEtiologyExposure toFailure to ThriveFunctional disorderGene ExpressionGoalsGrowthHealthHepaticHyperammonemiaHyperargininemiaImpairmentInborn Errors of MetabolismInequalityInterneuronsInterventionKnock-outKnockout MiceLaboratoriesLifeLiverMeasurableMeasuresMediatingMetabolismMicrocephalyMotorMusMyelinNeonatalNervous System TraumaNeuraxisNeurologicNeuronal DysfunctionNeuronal InjuryNeuronsOligodendrogliaPathogenesisPatientsPeriodicityPeripheralPharmacologyPlasmaPlayPsyche structureRecombinant adeno-associated virus (rAAV)ResearchResolutionRoleSeizuresSliceSynapsesSynaptic TransmissionTaurineTestingToxinUrea cycle disordersarginasebasecentral nervous system injurydensitydysmyelinationexcitatory neuronexperimental studygene therapyimprovedinfancyknockout animalleukodystrophymouse modelmyelinationnervous system disorderneuropathologynovel therapeuticspatch clamppostnatalpreventresponserestorationspasticitytransmission processurea cycle
项目摘要
Project Summary/Abstract
The overall goals of this project are to 1) investigate the etiology of the unique neuropathology associated with
arginase 1 (A1) deficiency, a disorder of the urea cycle, and 2) to extensively demonstrate that AAV-based
hepatic gene therapy is effective in preventing the features of this disorder as a prelude to a clinical trial. A1
deficiency results in chronic hyperargininemia characterized by progressive mental impairment, spasticity, and
growth retardation, with only periodic episodes of hyperammonemia. Recent and preliminary findings from our
laboratory with the A1-deficient mouse have demonstrated substantial anatomical, ultrastructural and electro-
physiological differences between knockouts and wild types. A1 deficiency led to decreased intrinsic excita-
bility, altered functional synaptic transmission, decreased dendritic arborization, dysmyelination and decreased
synaptic density. The most likely mechanism causing these neuronal abnormalities is hyperarginine- or guani-
dino compound-mediated dysfunction of neurons and oligodendrocytes. Controlling plasma arginine and guani-
dino compounds following administration of liver-specific AAV-based gene therapy resulted in much of these
measures being substantially improved. The finding abnormalities at the neuron, synapse, myelin, and circuit
level have begun to elucidate the functional deficits in A1 deficiency. The identification of the proximate toxin
and mechanism of neurodysfunction will open doors to potential pharmacological interventions for A1
deficiency in addition to gene therapy, and may open avenues to new therapies for other disorders where
dysmyelination is a feature. Preliminary data: Our research group has (amongst other findings): 1) constructed
and characterized the A1-deficient mouse; 2) demonstrated long-term survival with liver-specific recombinant
AAV; 3) demonstrated that only low-level ureagenesis is necessary for survival; 4) shown that gene therapy-
treated A1 knockout mice lack gross nervous system abnormalities; 5) shown that peripheral metabolism
results in control of circulating plasma arginine; and 6) shown that loss of A1 gene expression results in
abnormalities of intrinsic excitability, synapse type and number, myelination and the dendritic arbor of neurons.
In Aim 1, the hypothesis that oligodendrocyte dysfunction and death result in dysmyelination and is in part the
cause of neuronal dysfunction in A1 deficiency will be tested. In Aim 2, the hypothesis that elevated guanidino
compounds can induce alterations in intrinsic excitability and synaptic transmission that are similar to those
seen in A1 deficient animals will be tested. In Aim 3, it will be determined if A1 deficiency causes an imbalance
in excitation and inhibition, and if this inequality is mainly through effects on perisomatic inhibition. Completion
of these studies will provide a greater understanding of and the mechanism(s) behind the alterations in the
brain, neurons, and synapses in A1 deficiency and hyperargininemia while demonstrating the efficacy of
hepatic A1 gene therapy in preventing these abnormalities, providing strong evidence for this therapy as a
prelude to its clinical adoption in patients with this progressive neurological disorder.
项目概要/摘要
该项目的总体目标是 1) 研究与以下疾病相关的独特神经病理学的病因学:
精氨酸酶 1 (A1) 缺乏症,一种尿素循环障碍,以及 2) 广泛证明基于 AAV 的
作为临床试验的前奏,肝脏基因治疗可有效预防这种疾病的特征。 A1
缺乏会导致慢性高精氨酸血症,其特征是进行性精神障碍、痉挛和
生长迟缓,仅伴有周期性高氨血症。我们的最新和初步调查结果
实验室对 A1 缺陷小鼠的研究已经证明了其显着的解剖学、超微结构和电学特征。
敲除型和野生型之间的生理差异。 A1 缺乏导致内在兴奋性下降
能力、功能性突触传递改变、树突分枝减少、髓鞘形成障碍和减少
突触密度。导致这些神经元异常的最可能的机制是高精氨酸或鸟嘌呤
恐龙化合物介导的神经元和少突胶质细胞功能障碍。控制血浆精氨酸和鸟嘌呤
施用基于肝脏特异性 AAV 的基因治疗后的恐龙化合物导致了其中大部分
措施明显完善。发现神经元、突触、髓磷脂和回路异常
水平已开始阐明 A1 缺乏症的功能缺陷。邻近毒素的鉴定
神经功能障碍的机制将为 A1 的潜在药物干预打开大门
除了基因疗法之外,还可能为其他疾病的新疗法开辟途径
髓鞘发育不良是一个特征。初步数据:我们的研究小组(除其他发现外):1)构建
并对 A1 缺陷小鼠进行了表征; 2) 证明肝脏特异性重组可以长期存活
腺病毒; 3)证明只有低水平的尿素生成对于生存是必要的; 4)表明基因治疗-
经治疗的 A1 基因敲除小鼠缺乏明显的神经系统异常; 5)表明外周代谢
控制循环血浆精氨酸的结果;和 6) 表明 A1 基因表达缺失会导致
内在兴奋性、突触类型和数量、髓鞘形成和神经元树突状结构的异常。
在目标 1 中,假设少突胶质细胞功能障碍和死亡导致髓鞘形成障碍,并且部分是由于
将测试 A1 缺乏症神经元功能障碍的原因。在目标 2 中,假设提高胍基
化合物可以诱导内在兴奋性和突触传递的改变,类似于那些
在 A1 缺陷动物中观察到的情况将进行测试。在目标 3 中,将确定 A1 缺乏是否会导致失衡
兴奋和抑制,如果这种不平等主要是通过对体周抑制的影响。完成
这些研究将提供对这些变化背后的机制的更深入的了解
A1 缺乏症和高精氨酸血症中的大脑、神经元和突触,同时证明了
肝 A1 基因疗法可以预防这些异常,为该疗法作为一种治疗方法提供了强有力的证据。
为这种进行性神经系统疾病患者的临床采用奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerald S Lipshutz其他文献
Gerald S Lipshutz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerald S Lipshutz', 18)}}的其他基金
Gene Therapy Clinical Candidate Development for Carbamoyl Phosphate Synthetase Deficiency
氨基甲酰磷酸合成酶缺乏症的基因治疗临床候选药物开发
- 批准号:
10540348 - 财政年份:2022
- 资助金额:
$ 34.13万 - 项目类别:
Gene Therapy Clinical Candidate Development for Carbamoyl Phosphate Synthetase Deficiency
氨基甲酰磷酸合成酶缺乏症的基因治疗临床候选药物开发
- 批准号:
10339836 - 财政年份:2022
- 资助金额:
$ 34.13万 - 项目类别:
Understanding the Mechanism and Preventing the Unique Neuropathology of Arginase Deficiency
了解精氨酸酶缺乏的机制并预防独特的神经病理学
- 批准号:
10318637 - 财政年份:2019
- 资助金额:
$ 34.13万 - 项目类别:
Understanding the Mechanism and Preventing the Unique Neuropathology of Arginase Deficiency
了解精氨酸酶缺乏的机制并预防独特的神经病理学
- 批准号:
9908195 - 财政年份:2019
- 资助金额:
$ 34.13万 - 项目类别:
Understanding the Mechanism and Preventing the Unique Neuropathology of Arginase Deficiency
了解精氨酸酶缺乏的机制并预防独特的神经病理学
- 批准号:
10540721 - 财政年份:2019
- 资助金额:
$ 34.13万 - 项目类别:
Cell and Gene Replacement Strategies for Arginase Deficiency
精氨酸酶缺乏症的细胞和基因替代策略
- 批准号:
10115139 - 财政年份:2017
- 资助金额:
$ 34.13万 - 项目类别:
Cell and Gene Replacement Strategies for Arginase Deficiency
精氨酸酶缺乏症的细胞和基因替代策略
- 批准号:
9289701 - 财政年份:2017
- 资助金额:
$ 34.13万 - 项目类别:
Development of Molecular Therapy for Carbamoyl Phosphate Synthetase Deficiency
氨基甲酰磷酸合成酶缺乏症分子治疗的进展
- 批准号:
8996735 - 财政年份:2015
- 资助金额:
$ 34.13万 - 项目类别:
Development of Molecular Therapy for Carbamoyl Phosphate Synthetase Deficiency
氨基甲酰磷酸合成酶缺乏症分子治疗的进展
- 批准号:
8872239 - 财政年份:2015
- 资助金额:
$ 34.13万 - 项目类别:
Immunologic Aspects of In Utero or Neonatal AAV-Based Gene Therapy
子宫内或新生儿基于 AAV 的基因治疗的免疫学方面
- 批准号:
8915936 - 财政年份:2014
- 资助金额:
$ 34.13万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Operating Grants














{{item.name}}会员




