Structural and Functional Plasticity Surrounding Implanted Neuroprostheses
植入神经假体周围的结构和功能可塑性
基本信息
- 批准号:10083770
- 负责人:
- 金额:$ 37.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdultAnti-Inflammatory AgentsAstrocytesAutopsyBasic ScienceBrainCellsCommunication BarriersCuesDataDendritic SpinesDetectionDevelopmentDevice DesignsDevicesElectrodesElectrophysiology (science)EncapsulatedEnvironmentEquipment MalfunctionEventExcitatory SynapseExhibitsFluorescent DyesGliosisGlutamate TransporterGlutamatesImageImmunohistochemistryImplantImplanted ElectrodesIn VitroInflammatoryInflammatory ResponseInjuryInterruptionLabelLinkMeasurementMechanicsMediatingMethodsMicroelectrodesMicrogliaMicroscopeModelingMorphologyMotor CortexN-MethylaspartateNeocortexNervous System TraumaNeuronsNeurotransmittersNoiseOutcomePerformancePolymersPublishingRNA InterferenceRadialRattusRoleScanning Electron MicroscopyShapesSignal TransductionSiliconSliceSourceStructureSurfaceSynapsesSynaptic TransmissionSynaptic plasticityTestingThinnessTimeTime StudyTissuesVertebral columnbasebiomaterial compatibilitybrain tissuecytokinecytotoxicitydensityelectric impedanceexcitotoxicityfunctional plasticitygamma-Aminobutyric Acidimplantable deviceimplantationimprovedin vivoinflammatory markerknock-downmicroscopic imagingnervous system disorderneuron lossneuroprosthesisneurotoxicityneurotransmissionnovelpreservationresponsetransmission processtwo-photonvesicular GABA transportervesicular glutamate transporter 1
项目摘要
PROJECT SUMMARY
The development of implantable devices capable of recording or stimulating electrical activity in the brain has
created unprecedented opportunities to treat and study neurological diseases and injuries. However, a reactive
tissue response typically occurs following implantation which is widely believed to interfere with long-term device
performance. Inflammatory microglia and astrocytes encapsulate and isolate devices from neurons, while
neuronal signal sources are lost within the recordable radius of the electrode surface. While these observations
may contribute to signal instability and recording loss over time, the mechanistic link between specific
inflammatory events and changes in signal quality remains unclear. Our group is expanding upon the current
basic science understanding of device-tissue integration and recently published a study which showed shifts in
subtype-specific markers of synaptic transmission surrounding implanted electrode arrays. Our data indicated
an early elevation of markers of excitatory transmission (vesicular glutamate transporter-1, VGLUT1) three days
post-implantation that was followed by a subsequent shift to increased expression of labeling for inhibitory
neurotransmission (vesicular GABA transporter, VGAT). We hypothesize that structural and functional plasticity
of synaptic inputs surrounding devices could contribute to loss of recorded signals. We further hypothesize that
the timed elevation of glutamate and GABA release may act as “go” and “stop” cues which mediate the reactive
tissue response. In this proposal, we will build upon our initial observations, further investigating the underlying
mechanisms and functional consequences of synaptic plasticity on device performance. In Specific Aim 1, we
will define the functional impacts of glutamatergic synaptic remodeling at the electrode interface on recorded
signal quality and reactive gliosis. We will correlate transporter expression with signal quality and assess the
effects of VGLUT1 knockdown on signal quality and tissue response. In Specific Aim 2, we similarly will define
the functional impacts of GABAergic synaptic remodeling at the electrode interface on recorded signal quality
and reactive gliosis. We hypothesize that while early glutamate release may incite neurotoxicity and reactive
gliosis, subsequent GABA release acts in an anti-inflammatory capacity to preserve neuronal viability and
mitigate further glial reactivity. In Specific Aim 3, we will reveal structural plasticity in the dendritic arbors of
neurons at the electrode interface. For this aim, we will use two photon imaging to assess changes in dendritic
spine density and morphology surrounding devices captured in ex vivo brain tissue slices. For all aims, we will
test both silicon and polyimide-based arrays to compare results between device designs commonly used in the
field. We will inspect impedance measurements and post-mortem scanning electron microscopy images for signs
of device failure to strengthen the interpretation of our results. By exploring novel mechanisms of synaptic
plasticity surrounding implanted electrode arrays, we expect to open new opportunities to both understand, and
improve upon, long-term device function and biocompatibility.
项目摘要
能够记录或刺激大脑中电活动的可植入设备的开发具有
创造了前所未有的机会来治疗和研究神经系统疾病和伤害。但是,是反应性的
组织反应通常是在植入后发生的,这被广泛认为干扰长期装置
表现。炎症性小胶质细胞和星形胶质细胞封装和分离神经元的装置,而隔离胶质细胞
神经元信号源在电极表面的可记录半径内丢失。而这些观察
可能导致信号不稳定性和随着时间的记录损失,特定的机械联系
炎症事件和信号质量的变化尚不清楚。我们的小组正在扩展当前
基础科学对设备组织整合的理解,并最近发表了一项研究,该研究显示了变化
围绕植入电极阵列的突触传输的亚型特异性标记。我们的数据指示
兴奋传播标记的早期升高(囊泡谷氨酸转运蛋白1,vglut1)三天
植入后植入后,随后转移到标记表达增加的抑制作用
神经传递(VESical GABA转运蛋白,VGAT)。我们假设结构和功能性可塑性
设备周围的突触输入可能导致记录信号的丢失。我们进一步假设
谷氨酸和GABA释放的定时海拔可能充当“ GO”和“停止”线索,可以介导反应性
组织反应。在此提案中,我们将基于最初的观察,进一步研究基础
突触可塑性对设备性能的机制和功能后果。在特定目标1中,我们
将定义谷氨酸能突触重塑在电极接口上的功能影响
信号质量和反应性鞠躬。我们将将转运蛋白的表达与信号质量和评估相关联
VGLUT1敲低对信号质量和组织反应的影响。在特定的目标2中,我们同样会定义
电极界面处GABA能突触重塑对记录的信号质量的功能影响
和反应性神经病。我们假设,尽管早期谷氨酸释放可能会促进神经毒性和反应性
神经胶质病,随后的GABA释放具有抗炎能力,可保留神经元的生存力和
减轻进一步的神经胶质反应性。在特定的目标3中,我们将在树突状乔木中揭示结构可塑性
电极界面处的神经元。为此,我们将使用两种光子成像来评估树突状的变化
在离体脑组织切片中捕获的设备周围的脊柱密度和形态。对于所有目标,我们将
测试基于硅和聚酰亚胺的阵列,以比较在该设备设计之间常用的设备设计之间的结果
场地。我们将检查阻抗测量和验证后电子显微镜图像的迹象
设备无法加强我们结果的解释。通过探索突触的新机制
围绕植入电极阵列的可塑性,我们期望为理解和
改善长期设备功能和生物相容性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin K Purcell其他文献
Erin K Purcell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin K Purcell', 18)}}的其他基金
Spatial transcriptomics at the interface of implanted electrodes in the brain
大脑植入电极界面的空间转录组学
- 批准号:
10532895 - 财政年份:2022
- 资助金额:
$ 37.26万 - 项目类别:
Structural and Functional Plasticity Surrounding Implanted Neuroprostheses
植入神经假体周围的结构和功能可塑性
- 批准号:
10548226 - 财政年份:2019
- 资助金额:
$ 37.26万 - 项目类别:
Structural and Functional Plasticity Surrounding Implanted Neuroprostheses
植入神经假体周围的结构和功能可塑性
- 批准号:
10004761 - 财政年份:2019
- 资助金额:
$ 37.26万 - 项目类别:
Optical control of network formation in stem cell-derived neurons
干细胞源性神经元网络形成的光学控制
- 批准号:
9128745 - 财政年份:2015
- 资助金额:
$ 37.26万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Non-invasive vagus nerve stimulation to mitigate subarachnoid hemorrhage induced inflammation
无创迷走神经刺激减轻蛛网膜下腔出血引起的炎症
- 批准号:
10665166 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Oxidative Lipidomics in Pediatric Traumatic Brain Injury
氧化脂质组学在小儿创伤性脑损伤中的应用
- 批准号:
10844023 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 37.26万 - 项目类别: