Improving Accuracy and Reliability in Cancer Screening Tests

提高癌症筛查测试的准确性和可靠性

基本信息

  • 批准号:
    10083719
  • 负责人:
  • 金额:
    $ 29.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-15 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary Current clinical practice in screening tests involves subjective interpretation of patients' test results such as mammograms by trained experts. Substantial variability is often reported between radiologists' visual classifications of breast images, impacting the accuracy and consistency of common screening tests including mammography. Factors related to patients and raters and the technology itself may impact experts' ratings of breast cancer and density, an important predictor of breast cancer. However, the study of accuracy and consistency between radiologists' ratings in large-scale cancer longitudinal screening studies is challenging due to the ordinal nature of the classifications and many experts each contributing ratings. Newly emerging processes including automated 3-D procedures provide exciting potential for estimating breast density in routine clinical settings. Currently very few statistical approaches and summary measures exist to model the consistency and accuracy between several radiologists' ordinal ratings. Further, few methods can investigate the influence of patient and radiologist characteristics, the use of automated procedures and comparison of the different technologies upon accuracy and consistency. Our goals are to develop new statistical methods based upon generalized linear mixed models and latent variable models to study accuracy and consistency amongst many experts in large-scale screening studies. Our approach can flexibly accommodate many experts' ratings and other factors to examine their influence on consistency and accuracy. We will derive novel model-based summary measures of agreement and accuracy. We will implement our new statistical methods in recent large-scale breast imaging studies. A key strength of our proposed research is to provide medical researchers with a flexible modeling approach and novel summary measures that utilize all the data simultaneously, where conclusions can be drawn about the consistency between typical experts and patients in the populations, greatly increasing efficiency and power. The study of patient and rater characteristics on the levels of consistency and accuracy between raters' classifications will translate to improvements in training radiologists and practice of interpreting mammograms, and ultimately, a more effective breast screening procedure.
项目摘要 目前筛查试验的临床实践涉及对患者试验结果的主观解释,例如 由训练有素的专家进行乳房X光检查。放射科医生的视觉检查结果之间经常报告有很大的差异。 乳腺图像的分类,影响常见筛查测试的准确性和一致性 包括乳房X光检查。与患者和评估者以及技术本身相关的因素可能会影响 专家对乳腺癌和密度的评级,这是乳腺癌的一个重要预测因素。然而,研究 大规模癌症纵向筛查研究中放射科医师评分的准确性和一致性 由于分类的顺序性质和许多专家各自贡献评级,因此具有挑战性。 包括自动化3D程序在内的新兴过程为评估提供了令人兴奋的潜力 乳腺密度在常规临床设置。目前很少有统计方法和汇总措施 存在对几个放射科医师的顺序评级之间的一致性和准确性进行建模。此外,少数 方法可以调查患者和放射科医师特征的影响,自动化的 程序和不同技术的准确性和一致性的比较。 我们的目标是发展新的统计方法基于广义线性混合模型和潜在的 可变模型,以研究大规模筛选研究中许多专家之间的准确性和一致性。 我们的方法可以灵活地适应许多专家的评级和其他因素,以检查他们的影响 一致性和准确性。我们将推导出新颖的基于模型的一致性汇总指标, 精度我们将在最近的大规模乳腺成像研究中实施我们的新统计方法。一个关键 我们提出的研究的优势是为医学研究人员提供灵活的建模方法, 同时利用所有数据的新汇总措施,可以得出以下结论 人群中典型专家和患者之间的一致性,大大提高了效率, 动力.患者和评定者特征在一致性和准确性水平上的研究 评级者的分类将转化为放射科医师培训和口译实践的改进 乳房X光检查,最终,一个更有效的乳房筛查程序。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marginal analysis of multiple outcomes with informative cluster size.
  • DOI:
    10.1111/biom.13241
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Mitani AA;Kaye EK;Nelson KP
  • 通讯作者:
    Nelson KP
Methods of assessing categorical agreement between correlated screening tests in clinical studies.
  • DOI:
    10.1080/02664763.2020.1777394
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Zhou TJ;Raza S;Nelson KP
  • 通讯作者:
    Nelson KP
Persistent inter-observer variability of breast density assessment using BI-RADS® 5th edition guidelines.
  • DOI:
    10.1016/j.clinimag.2021.11.034
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Portnow LH;Georgian-Smith D;Haider I;Barrios M;Bay CP;Nelson KP;Raza S
  • 通讯作者:
    Raza S
Measuring intrarater association between correlated ordinal ratings.
Measuring rater bias in diagnostic tests with ordinal ratings.
  • DOI:
    10.1002/sim.9011
  • 发表时间:
    2021-07-30
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Kim C;Lin X;Nelson KP
  • 通讯作者:
    Nelson KP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KERRIE P NELSON其他文献

KERRIE P NELSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KERRIE P NELSON', 18)}}的其他基金

Model Agreement in Cancer Diagnostic Tests
癌症诊断测试中的模型协议
  • 批准号:
    8629037
  • 财政年份:
    2014
  • 资助金额:
    $ 29.91万
  • 项目类别:
Modeling inter-rater agreement using mixed models
使用混合模型对评估者间的一致性进行建模
  • 批准号:
    7091213
  • 财政年份:
    2006
  • 资助金额:
    $ 29.91万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了