Role of de Novo Synthesis of Sphingolipids in Aneuploid Cells
鞘脂从头合成在非整倍体细胞中的作用
基本信息
- 批准号:10084296
- 负责人:
- 金额:$ 33.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAneuploid CellsAneuploidyCell CycleCell Cycle ArrestCell physiologyCellsCeramidesChromosomesClinicClinicalDNA Sequence AlterationDataDependenceDevelopmentDiseaseDown SyndromeDrug TargetingDrug UtilizationEnzymesEquilibriumEukaryotaGene DeletionGene ExpressionGenesGrowthHumanIntellectual functioning disabilityLeadLipidsLiteratureMalignant NeoplasmsMetabolicMetabolic PathwayMetabolismMolecularMutationNeurodegenerative DisordersNormal CellPathway interactionsPhenotypePhosphoric Monoester HydrolasesPhosphotransferasesPhysiologicalPlayProcessPrognosisProliferatingProteinsProteomeRegulationRoleSeriesSerineSignal PathwaySignaling MoleculeSphingolipidsSphingosineStressTumor BiologyYeastsanti-cancercancer cellcancer typechromosome number abnormalityfitnessgenetic approachhuman diseaseimprovedinsightlipid metabolismnovelpressureproteotoxicityresponseserine palmitoyltransferasetumor
项目摘要
Abstract
Aneuploidy, a cellular state of having an abnormal number of chromosomes, is a hallmark of cancer. The
degree of aneuploidy significantly correlates with tumor aggressiveness and poor clinical prognosis. Therefore,
studying the cellular processes affected by aneuploidy can improve our understanding of the role of aneuploidy
in tumor biology. Our preliminary results show that de novo synthesis of sphingolipids is increased by
aneuploidy; we therefore propose to identify the molecular mechanisms underlying this effect. Targeting the
synthesis of sphingolipids holds great potential as an anti-cancer strategy that could be used either alone or in
combination with existing therapies. Despite the existence of a large body of literature providing strong
evidence for the misregulation of sphingolipid metabolism in human diseases, including several types of
cancers, the molecular mechanisms that lead to this misregulation are poorly understood. The focus of this
proposal is to unravel the molecular mechanisms that regulate de novo synthesis of sphingolipids and to
decipher how these mechanisms are affected in aneuploid cells. To this end, we propose to: (1) Determine
how aneuploidy increases sphingolipid biosynthesis. Our preliminary data supports the hypothesis that
aneuploid cells rely on the increased activity of serine palmitoyltransferase, the enzyme that controls the first
and irreversible step of sphingolipid synthesis, to proliferate. Therefore, we will investigate the function of
signaling pathways that regulate serine palmitoyltransferase in aneuploidy. In addition, because serine serves
as a precursor for sphingolipids, we will investigate whether aneuploidy leads to increased serine utilization. To
that end, we plan to quantify serine metabolic flux through the sphingolipid pathway in aneuploid cells. Our
studies will provide novel insights into how sphingolipid synthesis is affected in response to aneuploidy. (2)
Determine how sphingolipid levels control the fitness of aneuploid cells. Our preliminary results show that
mutations in four different genes that increase the levels of sphingosine and lower those of ceramide, improve
the fitness of aneuploid cells. Therefore, we will determine, in aneuploid cells, the function of Pkh1/2 kinases
and Cdc55 phosphatase because these signaling molecules are known to act downstream of sphingolipids and
regulate the cell cycle and responses to stress. In addition, we will determine specific cellular pathways and
processes that play an important role in overcoming the detrimental effects of aneuploidy. Gene expression,
proteome content, and phenotypic analyses in combination with genetic approaches will be used to accomplish
this aim. Altogether, our studies will contribute to a better understanding of the physiological role of
sphingolipids in controlling the fitness of aneuploid cells. Determining the mechanisms that control the fitness
of aneuploid cells can be exploited to target aneuploid cancer cells and to ameliorate the deleterious effects of
aneuploidy in Down syndrome or neurodegenerative diseases.
抽象的
非整倍性是染色体数量异常的细胞状态,是癌症的标志。这
非整倍性程度与肿瘤侵袭性和临床预后不良显着相关。所以,
研究受非整倍性影响的细胞过程可以提高我们对非整倍性作用的理解
在肿瘤生物学中。我们的初步结果表明,从头合成鞘脂的合成是通过
非整倍性;因此,我们建议确定这种作用的分子机制。定位
鞘脂的合成具有巨大的潜力,可以单独或在
结合现有疗法。尽管存在大量文学作品
人类疾病中鞘脂代谢的不正调的证据,包括几种类型的
癌症是导致这种正调的分子机制的理解不足。重点
建议是阐明调节鞘脂从头合成的分子机制和
破译这些机制如何在非整倍体细胞中影响。为此,我们建议:(1)确定
非整倍性如何增加鞘脂生物合成。我们的初步数据支持以下假设
非整倍体细胞依赖于丝氨酸棕榈酰转移酶的活性增加,这是控制第一个的酶
鞘脂合成的不可逆转步骤,以增殖。因此,我们将研究
信号传导途径,调节丝氨酸棕榈酰转移酶在非整倍型中。另外,因为丝氨酸服务
作为鞘脂的前体,我们将研究非整倍性是否导致丝氨酸利用率增加。到
那一端,我们计划通过非整倍体细胞中的鞘脂途径来量化丝氨酸代谢通量。我们的
研究将提供有关鞘脂合成如何影响非整倍性的新见解。 (2)
确定鞘脂水平如何控制非整倍体细胞的适应性。我们的初步结果表明
四个不同基因的突变增加了鞘氨醇水平并降低神经酰胺的水平,改善
非整倍体细胞的适应性。因此,我们将在非整倍体细胞中确定PKH1/2激酶的功能
和Cdc55磷酸酶,因为已知这些信号分子在鞘脂和下游作用
调节细胞周期和对压力的反应。此外,我们将确定特定的细胞途径和
在克服非整倍性的有害影响方面起着重要作用的过程。基因表达,
蛋白质组含量和表型分析将与遗传方法结合使用来完成
这个目标。总之,我们的研究将有助于更好地理解
鞘脂在控制非整倍体细胞的适应性方面。确定控制健身的机制
可以利用非整倍体细胞靶向非整倍性癌细胞,并改善
唐氏综合症或神经退行性疾病的非整倍性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Consequences of aneuploidy in human fibroblasts with trisomy 21.
- DOI:10.1073/pnas.2014723118
- 发表时间:2021-02-09
- 期刊:
- 影响因子:11.1
- 作者:Hwang S;Cavaliere P;Li R;Zhu LJ;Dephoure N;Torres EM
- 通讯作者:Torres EM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo Martin Torres其他文献
Eduardo Martin Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduardo Martin Torres', 18)}}的其他基金
Suppressing Aneuploidy-associated phenotypes in Down syndrome
抑制唐氏综合症的非整倍体相关表型
- 批准号:
10536927 - 财政年份:2022
- 资助金额:
$ 33.08万 - 项目类别:
Role of de Novo Synthesis of Sphingolipids in Aneuploid Cells
鞘脂从头合成在非整倍体细胞中的作用
- 批准号:
9238913 - 财政年份:2017
- 资助金额:
$ 33.08万 - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 33.08万 - 项目类别:
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 33.08万 - 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 33.08万 - 项目类别:
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 33.08万 - 项目类别:
Center of Research Translation on Osteoporosis Bone Anabolic Therapies
骨质疏松症骨合成代谢疗法研究转化中心
- 批准号:
10404412 - 财政年份:2023
- 资助金额:
$ 33.08万 - 项目类别: