Developmental models to determine the molecular mechanisms that cause MYH9-related diseases
确定导致 MYH9 相关疾病的分子机制的发育模型
基本信息
- 批准号:10077874
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:Abnormal PlateletAffectBiological AssayBiological ModelsBiological ProcessCRISPR/Cas technologyCell ShapeCell divisionCellsCharacteristicsClinicalCodon NucleotidesComplexDataDefectDevelopmentDiseaseEarEmbryoEpstein&aposs syndromeEtiologyEyeFutureGenerationsGenesGoalsHumanImageInvestigationKidneyKnowledgeLabelLaboratoriesLeadMissionModelingMolecularMutateMutationNational Institute of Child Health and Human DevelopmentNephritisNonmuscle Myosin Type IIAOpticsOrganOtic VesicleOutcomePatientsPopulationProteinsPublic HealthResearchResolutionRoleStructureSymptomsSyndromeSystemTechniquesTestingTimeTissuesTransgenic OrganismsVertebratesVisualWorkZebrafishcell motilitydeafnessdisability burdenear developmentexperiencegenome editinghearing impairmentin vivoinnovationinsightmodel developmentmutantnon-muscle myosinnovelorgan growthtooltransmission process
项目摘要
This proposal aims to develop vertebrate models to elucidate molecular mechanisms by which known
mutations in MYH9 disrupt development. There are five diseases that result from mutations in MYH9, including
clinical syndromic disorders that are classified as MYH9-related diseases: May-Hegglin anomaly, Sebastian,
Fetchner, and Epstein syndrome; and non-syndromic deafness DFNA17. These diseases share common
mutations in the MYH9 gene and are characterized by a number of symptoms including platelet abnormalities,
nephritis, visual defects, and hearing loss. MYH9 encodes for the highly conserved non-muscle myosin IIA
protein (NMIIA), which has essential roles in cell division, cell migration, and cell shape changes. However,
there is a critical gap in the understanding of how MYH9 mutations found in the human population contribute to
the etiology of MYH9-related diseases. We propose to generate zebrafish (Danio rerio) models of the most
common MYH9 mutations to examine the development of the organs that are affected in MYH9-related
disease, particularly the ear, eye, and kidney. Zebrafish models will provide distinct advantages over current
mammalian models in the ability to access and examine early organ development at single-cell resolution
using live imaging. Zebrafish embryos are optically transparent, have rapid development, and genome editing
techniques in zebrafish are well established. Our long-term research goal is to determine the molecular
mechanisms for how mutations in the MYH9 gene lead to MYH9-related diseases. As the first step towards our
long-term research goal, the overall objective of this R03 proposal is to establish zebrafish models and
transgenic lines to study the mechanisms that cause MYH9-related diseases. Our central hypothesis is that
zebrafish models of conserved MYH9 mutations and NMIIA-labeled transgenic lines can be generated and will
allow us to elucidate the molecular mechanisms that cause MYH9-related diseases. We will test our central
hypothesis by pursuing the following specific aims. Aim 1 is to generate myh9 mutant zebrafish lines with
targeted and specific mutations that correspond to the most common human mutations in MYH9-related
diseases. Aim 2 is to create transgenic zebrafish lines with endogenously labelled NMIIA protein to examine
NMIIA localization and dynamics during development. We will accomplish these aims by generating zebrafish
models of MYH9 mutations using CRISPR/Cas9 genome editing. The proposed work is innovative and
significant because these studies will establish developmental vertebrate models that are needed to investigate
and identify the role for mutations in the highly conserved MYH9 gene and determine the molecular
mechanisms for how these mutations cause MYH9-related diseases. The outcomes from this proposal are
expected to have an important positive impact because they will provide the tools necessary to define how
mutations in MYH9 lead to developmental defects.
该建议旨在开发脊椎动物模型,以阐明已知的
MYH 9的突变破坏了发育。有五种疾病是由MYH 9突变引起的,包括
分类为MYH 9相关疾病的临床综合征疾病:May-Hegglin异常,塞巴斯蒂安,
Fetchner和Epstein综合征;和非综合征性耳聋DFNA 17。这些疾病有共同的
MYH 9基因突变,并以包括血小板异常在内的许多症状为特征,
肾炎、视力缺陷和听力损失。MYH 9编码高度保守的非肌肉肌球蛋白IIA
蛋白质(NMIIA),其在细胞分裂、细胞迁移和细胞形状改变中具有重要作用。然而,在这方面,
在理解人类中发现的MYH 9突变如何有助于
MYH 9相关疾病的病因。我们建议生成斑马鱼(Danio rerio)模型的最
常见的MYH 9突变,以检查MYH 9相关的受影响器官的发育
疾病,特别是耳朵,眼睛和肾脏。斑马鱼模型将提供明显的优势,
哺乳动物模型在单细胞分辨率下访问和检查早期器官发育的能力
使用实时成像。斑马鱼胚胎是光学透明的,具有快速发育和基因组编辑
在斑马鱼中的技术已经很成熟。我们的长期研究目标是确定
MYH 9基因突变如何导致MYH 9相关疾病的机制。作为我们迈向
长期研究目标,本R 03提案的总体目标是建立斑马鱼模型,
转基因株系,以研究导致MYH 9相关疾病的机制。我们的核心假设是,
可以产生保守MYH 9突变的斑马鱼模型和匪IIA标记的转基因系,
让我们能够阐明导致MYH 9相关疾病的分子机制。我们将测试我们的中央
通过追求以下具体目标的假设。目的1是产生myh 9突变体斑马鱼系,
靶向和特异性突变,对应于MYH 9相关的最常见的人类突变,
疾病目的二是建立内源性标记NMIIA蛋白的转基因斑马鱼品系,
NMIIA在开发过程中的本地化和动态。我们将通过培育斑马鱼来实现这些目标
使用CRISPR/Cas9基因组编辑的MYH 9突变模型。这项工作具有创新性,
重要的是,这些研究将建立研究所需的发育脊椎动物模型,
并确定高度保守的MYH 9基因突变的作用,
这些突变如何导致MYH 9相关疾病的机制。该提案的结果是
预计将产生重要的积极影响,因为它们将提供必要的工具,
MYH 9的突变导致发育缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer H Gutzman其他文献
Jennifer H Gutzman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer H Gutzman', 18)}}的其他基金
Developmental models to determine the molecular mechanisms that cause MYH9-related diseases
确定导致 MYH9 相关疾病的分子机制的发育模型
- 批准号:
9894984 - 财政年份:2020
- 资助金额:
$ 7.6万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists