High-Throughput Functional Genomics to Guide Precision Oncology in Gastrointestinal Tumors
高通量功能基因组学指导胃肠道肿瘤的精准肿瘤学
基本信息
- 批准号:10077788
- 负责人:
- 金额:$ 19.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesBase Excision RepairsBioinformaticsBiological AssayBiological MarkersCRISPR screenCaliforniaCancer BiologyCancer ModelCancer cell lineCell DeathCell LineCell LineageCharacteristicsChemoresistanceChemotherapy-Oncologic ProcedureClinicClinicalClinical OncologyClustered Regularly Interspaced Short Palindromic RepeatsColon CarcinomaComputing MethodologiesConfocal MicroscopyDNA DamageDataData SetDevelopmentDiagnostic testsDiseaseDrug TargetingFacultyFluorouracilGastrointestinal NeoplasmsGene CombinationsGene ExpressionGene TargetingGenerationsGenesGeneticGenomic approachGenomicsGuide RNAHeterogeneityK22 AwardKRAS2 geneKnock-outKnowledgeLaboratoriesLinkMachine LearningMalignant NeoplasmsMalignant neoplasm of gastrointestinal tractMapsMediatingMedical OncologistMethodsModelingMolecularMolecular AbnormalityMolecular ProfilingMutationNetwork-basedOncogenesOncologistOther GeneticsPathway interactionsPatientsPharmaceutical PreparationsPositioning AttributePrimary NeoplasmResearchResolutionResourcesSomatic MutationSystemSystems BiologyTP53 geneTechniquesTechnologyTestingTherapeuticTrainingTumor Suppressor GenesTumor TissueTumor-DerivedUniversitiesValidationWorkbasecancer cellcancer genomecancer genomicscancer heterogeneitycancer therapycancer typechemotherapyclinical practicecolon cancer cell linecombinatorialdesigndrug developmentdruggable targetexperienceexperimental studyfunctional genomicsgenome-widegenomic datahomologous recombinationindividual patientirinotecanloss of functionmachine learning methodmouse modelmutational statusneoplastic cellnext generation sequencingnoveloxaliplatinpatient derived xenograft modelprecision oncologypredictive markerprogramsresponsescreeningsmall molecule inhibitortargeted agenttargeted treatmenttranslational scientisttumor
项目摘要
Abstract:
This is an application for a K22 award for Dr. John Paul Shen, a medical oncologist currently at the
University of California, San Diego. Dr. Shen is establishing himself as a young translational investigator in the
field of cancer genomics. This K22 award will provide Dr. Shen with the resources and training to accomplish
the following objectives; (1) implement advanced computational methods on genome scale datasets (2) become
an expert in functional genomics, (3) achieve proficiency experimenting in mouse models of cancer, (4)
successfully manage an independent laboratory. To achieve these objectives, after accepting a faculty position
Dr. Shen will assemble a diverse advisory committee including experts in bioinformatics, experimental cancer
biology, and clinical oncology.
It was proposed by many that the ability to sequence a tumor genome, now made possible by next-
generation sequencing, would bring about a new era of precision oncology in which chemotherapy choices would
be individualized to match a single tumor and patient. However, the use genomic information in clinical practice
remains limited by the fact that currently very few mutations are associated with response to a specific drug. This
is particularly true in Gastrointestinal (GI) malignancies, where there are few targeted therapy options and few
effective biomarkers help guide chemotherapy selection. Dr. Shen seeks to address this pressing need by
employing high-throughput functional genomic methods to identify tumor specific vulnerabilities that could be
exploited therapeutically.
Recognizing that there will be great heterogeneity from one tumor to the next, even within the same
cancer type, the functional genomic data created here will be combined with systems biology methods to identify
how the vulnerabilities of each unique tumor can be predicted with information readily available to a clinical
oncologist. Using network-based machine learning methods applied to chemo-genomic viability data in
molecularly characterize cell lines it is expected that predictive biomarkers will be identified for both novel
targeted agents and currently used chemotherapy drugs. This will allow oncologists to design individualized
chemotherapy regimens for each patient.
摘要:
这是一份K22奖的申请书,申请人是约翰·保罗·沈博士,他是一位医学肿瘤学家,目前在
加州大学圣地亚哥分校。沈博士正在建立自己作为一个年轻的翻译研究者在
癌症基因组学领域。这个K22奖项将为沈博士提供资源和培训,
以下目标:(1)在基因组规模数据集上实现先进的计算方法(2)成为
功能基因组学专家,(3)熟练进行小鼠癌症模型实验,(4)
成功管理独立实验室。为了实现这些目标,在接受教师职位后,
博士沈将组建一个多元化的咨询委员会,包括生物信息学、实验癌症
生物学和临床肿瘤学
许多人提出,对肿瘤基因组进行测序的能力,现在已经成为可能,
一代测序,将带来一个精确肿瘤学的新时代,在这个时代,化疗的选择将
个体化以匹配单个肿瘤和患者。然而,在临床实践中使用基因组信息
但是,由于目前很少有突变与对特定药物的反应有关,因此,这种研究仍然受到限制。这
在胃肠道(GI)恶性肿瘤中尤其如此,其中几乎没有靶向治疗选择,
有效的生物标志物有助于指导化疗选择。沈博士试图通过以下方式解决这一迫切需求:
采用高通量功能基因组学方法来鉴定肿瘤特异性脆弱性,
治疗上的剥削
认识到从一个肿瘤到下一个肿瘤,即使在同一个肿瘤内,
癌症类型,这里创建的功能基因组数据将与系统生物学方法相结合,
如何利用临床医生容易获得的信息来预测每个独特肿瘤的脆弱性
肿瘤学家使用基于网络的机器学习方法应用于化学基因组活力数据,
分子表征细胞系,预期预测生物标志物将被鉴定为两种新的
靶向药物和目前使用的化疗药物。这将允许肿瘤学家设计个性化的
化疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Paul Ying Ching Shen其他文献
John Paul Ying Ching Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 19.22万 - 项目类别:
Standard Grant














{{item.name}}会员




