Cryopreserving Stem Cell-Derived Cardiomyocytes in Ready-to-use Assay Plates for Improved Reproducibility of Drug Toxicity Testing

在即用型检测板中冷冻保存干细胞衍生的心肌细胞,以提高药物毒性测试的重现性

基本信息

  • 批准号:
    10082253
  • 负责人:
  • 金额:
    $ 25.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-11 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT Nearly 90% of drugs under development fail to reach the market. Many of these failures occur due to cardiotoxicity. In a few notable cases, some drugs pass preclinical screens and clinical trials, only to be removed from the market once toxic effects are discovered in large patient populations. These failures represent a tremendous source of waste and constitute a significant part of the ~$2 billion cost of bringing a single drug to market. Consequently, the FDA now mandates that all drugs undergo in vitro cardiotoxicity testing before being tested in humans. This has led to a significant and growing market for tools and technologies that enable earlier detection of toxic effects before exposure to patients. However, current screening methods fall short of predicting how a drug will behave in the body; indeed there is a pressing need for more predictive model systems. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an attractive model for in vitro preclinical toxicity screening; they are derived from human tissue and have the potential to reduce the need for animal experimentation. However, at present, preparation of iPSC-CM assay plates (particularly the highly popular multi- electrode array plate) is technically challenging, which leads to higher operator-induced experimental variability and low site-to-site reproducibility. The drug discovery industry and its regulators realize the potential of iPSC-CMs for early cardiotoxicity screening, but also understand that there are currently significant limitations to their use in the drug development process caused by experimental variability. To address this, some companies currently provide “assay-ready” plates with cells already inside, which are then shipped to customers at ambient conditions. However, cells are not normally exposed to ambient conditions for such long periods of time—calling into question the scientific validity of that approach—and the inability to store the perishable product causes pain points in manufacturing and customer use. Nevertheless, the high demand for the current generation of ambient assay- ready plates (see Letters of Support) makes it clear that they represent a significant opportunity for reducing cost and waste in drug development. NanoSurface Biomedical, Inc. aims to develop the next generation of “assay- ready” technology by shipping customers cryogenically frozen assay plates containing iPSC-CM monolayers. We hypothesize that recent advances in cryopreserving monolayers of other cell types can be successfully translated and optimized for iPSC-CMs. We will first focus on demonstrating that iPSC-CMs and assay plates maintain viability and integrity after cryogenic storage as a monolayer (Aim 1), then conduct proof-of-concept studies showing that the iPSC-CM function is not adversely affected by the freeze/thaw process (Aim 2). Subsequent Phase 2 commercialization efforts will focus on optimizing the freezing and thawing process for scaling and commercial production, fully characterizing structural and functional phenotypes of the iPSC-CM plates after thaw, identifying a set of key physiological metrics that will be used for quality control, and designing and building ancillary hardware devices that will allow optimal reproducibility at the customer site during the thawing process.
项目摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eli Fine其他文献

Eli Fine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 25.21万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 25.21万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了