A System to Optically Determine the Absolute Membrane Potential in Human iPSCD Cardiac Myocytes
光学测定人 iPSCD 心肌细胞绝对膜电位的系统
基本信息
- 批准号:10081467
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-09 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAlgorithmsBiologicalBiological AssayBrugada syndromeCalibrationCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCell membraneCellsChemicalsComplexComputer softwareConnective TissueCultured CellsDNA Sequence AlterationDataDetectionDevelopmentDevicesDiseaseDoctor of PhilosophyDyesElectrodesElectronicsElectrophysiology (science)EndotheliumFibroblastsFluorescenceGenerationsGenetic studyGoalsHealthHeterogeneityHourHumanImageIn VitroIndustryKnowledgeLegal patentLightingManualsMeasurementMeasuresMechanicsMembraneMembrane PotentialsMethodsMicroscopeModelingMolecularMolecular BiologyMonitorNatureNoiseOptical MethodsOpticsOrganPerformancePharmaceutical PreparationsPhasePhototoxicityPostdoctoral FellowPreparationPropertyProtocols documentationQuality ControlRecording of previous eventsReportingReproducibilityResearchResearch PersonnelRestSafetySignal TransductionSourceStandardizationStudy SubjectSyndromeSystemTechniquesTestingTimeToxic effectValidationWorkbasecell typedesigndetectordrug candidatedrug developmentelectrical measurementexperimental studyfluorescence microscopeinduced pluripotent stem celllight intensitymedication safetynovelnovel therapeuticsoptical imagingoptogeneticspatch clamppre-clinicalquantumscreeningsensorsignal processingsoftware developmentstem cellssystems researchtemporal measurementtoolvirtualvoltagevoltage sensitive dye
项目摘要
Optical assays are a powerful tool in cellular electrophysiology. However, currently-available approaches have not
reached their full potential. The major limitation of existing optical systems is that they are unable to determine the
absolute voltage in the cell. Current commercial approaches report only qualitative relative changes in voltage, &
there is no information on absolute resting potential, diastolic potential, or action potential amplitude. Prior research
attempts to develop absolute voltage reports have been unsuccessful. In addition, currently available voltage-
sensitive dyes (VSDs) offer a very limited experimental duration (typically < 30 min) dyes due to: 1) high washout &
internalization rates, which removes them from the electrically active cell membrane; 2) high photo-toxicity, which
reduces the possible exposure time for measurements; & 3) acute dye toxicity, which limits membrane loading &
illumination, resulting in small signals & low signal to noise ratio.
This proposal overcomes these 2 major obstacles to develop & optimize our novel system which combines our
VSDs & our unique & robust optical & analytical system which determines absolute membrane potential. Our
integrated quantitative Optical Electrophysiology (qOEP) system consists of our patented long lasting VSDs,
optimized experimental protocols, optical detection system, & analytical software. Our VSDs, which operate in the
red/NIR spectral range, have reduced acute chemical & photo-toxicity, increased sensitivity, & slower washout/
internalization rate. This gives them the ability to be used in experiments up to 4 hours. This dramatic improvement
revolutionizes the types of experiment which can be performed. Specifically, slower internalization rate gives the
experimenter time to calibrate the VSD, so that the measured light intensity can be directly correlated with
transmembrane potential. The spectral properties & stability of this new generation of VSDs has been combined
with advances in electronics & circuitry that increase signal sensitivity & allow for qOEP. Dye performance & signal
processing are species & organ/cell type-specific. These systems have high degrees of cellular heterogeneity &
connective tissue relative to cultured cells. To develop a consistent system we will optimize our qOEP system
specifically for work with electrically syncytial preparations of induced pluripotent stem cell derived (IPSCD) cardiac
myocytes. The goal is to optimize a cell system (stem cell derived cardiac myocytes) & the dyes to make an
integrated optical system that makes qOEP available to almost any lab. This transformation will be similar to the
way that the advent of molecular biology kits made complex molecular biological techniques accessible to all. The
long term commercial opportunity is in cardiac safety screening to determine the arrhythmogenic potential of new drug
candidates in stem cell derived cardiac myocytes. Our novel system has the potential to have significant impact in
both the financial & human health aspects of drug development. Successful completion of Phase I will result in a
system consisting of sensors, dyes, illumination sources, & software that can be used for beta testing in Phase II. In
Phase II we will develop software, support, packaging & optimized hardware for a turn-key commercial system.
光学测定是细胞电生理学的强大工具。然而,目前可用的方法还没有
充分发挥了他们的潜力。现有光学系统的主要限制是它们无法确定
电池中的绝对电压。当前的商业方法仅报告电压的定性相对变化,&
没有关于绝对静息电位、舒张电位或动作电位幅度的信息。先前的研究
开发绝对电压报告的尝试并未成功。此外,目前可用的电压
敏感染料 (VSD) 的实验持续时间非常有限(通常 < 30 分钟),原因是:1) 高冲洗率和
内化率,将它们从电活性细胞膜上去除; 2)高光毒性,
减少测量可能的曝光时间; & 3) 急性染料毒性,限制膜负载 &
照明,导致小信号和低信噪比。
该提案克服了这两个主要障碍来开发和优化我们的新颖系统,该系统结合了我们的
VSD 和我们独特且强大的光学和分析系统可确定绝对膜电位。我们的
集成定量光学电生理学 (qOEP) 系统由我们获得专利的长效 VSD 组成,
优化的实验方案、光学检测系统和分析软件。我们的 VSD 运行于
红色/近红外光谱范围,降低了急性化学和光毒性,提高了灵敏度,并减缓了冲刷/
内部化率。这使它们能够用于长达 4 小时的实验。这种戏剧性的进步
彻底改变了可以进行的实验类型。具体来说,较慢的内化速率给出了
实验者校准 VSD 的时间,以便测量的光强度可以直接与
跨膜电位。新一代 VSD 的光谱特性和稳定性得到了结合
电子和电路方面的进步提高了信号灵敏度并允许 qOEP。染料性能和信号
处理是特定于物种和器官/细胞类型的。这些系统具有高度的细胞异质性&
结缔组织相对于培养细胞。为了开发一致的系统,我们将优化我们的 qOEP 系统
专门用于诱导多能干细胞衍生 (IPSCD) 心脏的电合胞制剂
肌细胞。目标是优化细胞系统(干细胞衍生的心肌细胞)和染料以制造
集成光学系统使 qOEP 几乎适用于任何实验室。这种转变将类似于
分子生物学试剂盒的出现使所有人都可以使用复杂的分子生物学技术。这
长期的商业机会在于心脏安全筛查,以确定新药的致心律失常潜力
干细胞衍生的心肌细胞的候选者。我们的新颖系统有可能对以下领域产生重大影响:
药物开发的财务和人类健康方面。第一阶段的成功完成将导致
系统由传感器、染料、照明源和软件组成,可用于第二阶段的 beta 测试。在
第二阶段,我们将为交钥匙商业系统开发软件、支持、包装和优化硬件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony John Costantino其他文献
Anthony John Costantino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Operating Grants














{{item.name}}会员




