Mutually Orthogonal Metabolic Probes for Multiplexed Imaging of de novo Phospholipid Biosynthesis
用于从头磷脂生物合成多重成像的相互正交代谢探针
基本信息
- 批准号:10086319
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAzidesBiological FactorsCell LineCell membraneCell modelCell physiologyCellsCellular biologyChemicalsChemistryCholineColorComprehensionCoupledCyclooctenesDevelopmentDiseaseEndoplasmic ReticulumEnzymesEthanolaminesEvaluationExhibitsFellowshipFluorescent DyesFoundationsGenetic DiseasesGoalsHomeostasisHumanImageImpairmentIn VitroIndividualKnock-outKnowledgeLabelLecithinLenz-Majewski syndromeLimb structureLipidsLiver FailureMammalian CellMembraneMembrane BiologyMetabolicMolecularMonitorMouse Cell LineMutationOrganismPathway interactionsPatientsPhosphatidylcholine BiosynthesisPhosphatidylethanolaminePhosphatidylserine SynthasePhosphatidylserinesPhospholipidsReactionRegulationReportingResearchResearch ProposalsRoleSaccharomyces cerevisiaeSpecificityTestingTherapeuticTimeValidationWorkYeastsbasecraniofacialcross reactivitydesignexperimental studyfluorophorefunctional groupgain of function mutationhuman diseaseimaging capabilitiesin vivoinsightlive cell imagingmultiplexed imagingmutantnovelresponsesmall moleculetargeted treatmenttool
项目摘要
PROJECT SUMMARY/ABSRACT
Mutations in enzymes responsible for phospholipid biosynthesis and remodeling have been identified as key
biological factors in a growing number of genetic disorders. For example, Lenz-Majewski syndrome, a disease
associated with craniofacial and limb abnormalities, and intellectual impairment, is characterized by gain of
function mutations in phosphatidylserine synthase 1 enzyme (PSS1) that results in the accumulation of
phostphatidylserine (PS) in the endoplasmic reticulum (ER). While it is well established that the biosynthesis of
PS is tightly coupled to that of phospholipids including phosphatidylcholine (PC) and phosphatidylethanolamine
(PE), the consequences that increased PS synthesis has on the biosynthesis and membrane content of PC and
PE in patients with Lenz-Majewski syndrome are not known. This lack of knowledge limits our understanding of
the disease since PC and PE account for over half of the cell's total phospholipids. In addition, changes in the
relative concentrations of these lipids, especially in response to perturbations in the cellular content of other
phospholipids, are associate with a variety of human diseases including liver failure. The over-arching goal of
this proposal is to unveil the causal relationship between the biosynthesis and cellular content of PC and PE, in
real-time with live cells, when PS biosynthesis is disturbed in Lenz-Majewski syndrome. Bioorthogonal choline
and ethanolamine probes will be incorporated into PC and PE respectively through their de novo biosynthetic
pathways to enable multiplexed, live-cell imaging of these phospholipids after tagging with a fluorescent dye.
The proposed research is crafted into two Specific Aims to achieve this research goal. Specific Aim 1 focuses
on the synthesis of bioorthogonal choline and ethanolamine probes, and evaluation of labeling efficiency and
specificity of these probes for PC and PE respectively. Wild-type and knockout Saccharomyces cerevisiae yeast
strains will elucidate the enzymatic incorporation (i.e. Kennedy biosynthesis) of these probes and the optimized
labeling strategy will be transitioned into mammalian cells. Specific Aim 2 is designed to demonstrate the
multiplexed imaging capabilities of the mutually orthogonal PC and PE probes in mammalian cell lines and in
cellular models of Lenz-Majewski syndrome. Flux through the Kennedy biosynthetic pathway of PC and PE, and
changes in membrane content of these phospholipids, in response to uncontrolled PS synthesis will provide a
complete picture on changes in cell physiology during this disease. Completion of the research proposed in this
fellowship will have a broad impact in cell and membrane biology, providing novel tools to visualize perturbations
in local lipid composition and study the effects of these changes on cellular function in real-time. Specifically, this
work provides the framework for the characterization of PC and PE biosynthesis in an ever-growing class of
diseases characterized by mutations in enzymes associates with phospholipid biosynthesis.
项目概要/摘要
负责磷脂生物合成和重塑的酶的突变已被确定为关键
越来越多的遗传疾病中的生物因素。例如,伦茨-马波斯基综合征,
与颅面和肢体异常以及智力障碍相关,其特征在于获得
磷脂酰丝氨酸合成酶1(PSS 1)的功能突变,导致
磷脂酰丝氨酸(PS)在内质网(ER)。虽然已经很好地确定,
PS与磷脂酰胆碱(PC)和磷脂酰乙醇胺(PA)紧密偶联
(PE),PS合成增加对PC的生物合成和膜含量的影响,
Lenz-Mastenski综合征患者的PE尚不清楚。这种知识的缺乏限制了我们对
因为PC和PE占细胞总磷脂的一半以上。此外,
这些脂质的相对浓度,特别是在响应其他细胞内容物的扰动时,
磷脂与包括肝衰竭在内多种人类疾病有关。的总体目标
这一建议旨在揭示PC和PE的生物合成与细胞含量之间的因果关系,
实时与活细胞,当PS生物合成被扰乱Lenz-Mastenski综合征。生物正交胆碱
和乙醇胺探针将分别通过它们的从头生物合成被并入PC和PE中。
在用荧光染料标记后,能够对这些磷脂进行多重活细胞成像。
为了实现这一研究目标,拟议的研究分为两个具体目标。具体目标1重点
生物正交胆碱和乙醇胺探针的合成,以及标记效率和
这些探针分别对PC和PE的特异性。野生型和敲除酿酒酵母
菌株将阐明这些探针的酶促掺入(即Kennedy生物合成)和优化的
标记策略将过渡到哺乳动物细胞中。具体目标2旨在证明
相互正交的PC和PE探针在哺乳动物细胞系中的多重成像能力,
Lenz-Masterski综合征的细胞模型。通过PC和PE的肯尼迪生物合成途径,
这些磷脂的膜含量的变化,响应于不受控制的PS合成,将提供
在这种疾病中细胞生理变化的完整图片。完成本报告中提出的研究
奖学金将在细胞和膜生物学产生广泛的影响,提供新的工具来可视化扰动
在局部脂质组成,并研究这些变化对细胞功能的实时影响。具体来说,
工作提供了一个框架,在一个不断增长的类PC和PE生物合成的特点,
以磷脂生物合成相关酶突变为特征的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Marie White-Mathieu其他文献
Brittany Marie White-Mathieu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Marie White-Mathieu', 18)}}的其他基金
Mutually Orthogonal Metabolic Probes for Multiplexed Imaging of de novo Phospholipid Biosynthesis
用于从头磷脂生物合成多重成像的相互正交代谢探针
- 批准号:
10263358 - 财政年份:2019
- 资助金额:
$ 6.49万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 6.49万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 6.49万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 6.49万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 6.49万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 6.49万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 6.49万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 6.49万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 6.49万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 6.49万 - 项目类别:
Discovery Early Career Researcher Award