Validation of a genomic signature that predicts for sub-optimal debulking of epithelial ovarian cancer
验证预测上皮性卵巢癌次优减灭的基因组特征
基本信息
- 批准号:10150186
- 负责人:
- 金额:$ 9.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary
Epithelial ovarian cancer (EOC) affects approximally 21,000 women a year in the USA resulting in 13,000
deaths. Standard treatment includes debulking surgery followed by adjuvant chemotherapy. For 80% of
women this treatment is effective and prolongs survival. However, in 20% of women the cancer is extensively
disseminated through the peritoneum at time of surgery which complicates the surgical procedure and does
not allow optimal tumor debulking. For these women, tumor debulking is not effective and they experience
complicated and prolonged postoperative recovery.
A recent randomized phase III trial demonstrated that neoadjuvant chemotherapy with interval debulking
surgery is an effective alternative treatment for ovarian cancer patients and may be the ideal approach for
patients who cannot undergo optimal up front debulking. Thus there is a need to identify and stratify patients
based on their response to debulking surgery and develop more effective surgical and chemotherapeutic
approaches targeting sub-optimally debulked tumors
To address this need, we performed a meta-analysis of gene expression data using publicly available profiles
of 1,525 ovarian cancers and identified 198 genes that were highly expressed in tumors that were not optimally
debulked. We refer to these genes as “debulking signature. Ontologic pathway analysis of the debulking
signature showed hyper-activation of a specific oncogenic signaling responsible for malignant cancer
behaviors such as dissemination resistance to chemotherapy, i.e. the TGF- pathway. Thus, the signature may
serve as a predictive biomarker for patients who would benefit from up-front surgery and provide a biological
rationale for novel targeted therapies of tumors that cannot be optimally debulked.
The goal of this project is to develop a validated genomic signature which can be developed into
clinical diagnosis, and test in ovarian cancer mouse models whether targeting one of the most
enriched pathways of this signature, TGF-β, is effective. We will validate the 198 genes identified as highly
expressed in EOC that are not optimally debulked using two independent tissue arrays and establish an
optimal genomic signature that can be used for pre-operative diagnosis of these tumors (aim 1). We will then
perform preclinical studies testing whether inhibitors of the TGF- pathway currently being used in clinical trials
for other cancers, improve management of disseminated ovarian cancer models in mice (aim 2).
Altogether, we will establish a predictive biomarker that assists the surgeon and patient to choose the best
surgical procedure to be applied to an EOC patient, as well as identify a new adjuvant chemotherapeutic option
that improves therapeutic outcome. If successful, these studies will spare women from therapeutic suffering
and prolong their lives.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Birrer其他文献
Michael Birrer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Birrer', 18)}}的其他基金
Proteomic, Genomic, and Longitudinal Pathways to Ovarian Cancer Biomarker Discovery
卵巢癌生物标志物发现的蛋白质组学、基因组学和纵向途径
- 批准号:
10426776 - 财政年份:2021
- 资助金额:
$ 9.6万 - 项目类别:
Proteogenomic studies aimed at understanding ovarian tumor responses to agents targeting the DNA damage response and translating this knowledge into clinical benefit
蛋白质组学研究旨在了解卵巢肿瘤对针对 DNA 损伤反应的药物的反应,并将这些知识转化为临床益处
- 批准号:
10602812 - 财政年份:2017
- 资助金额:
$ 9.6万 - 项目类别:
Proteogenomic studies aimed at understanding ovarian tumor responses to agents targeting the DNA damage response and translating this knowledge into clinical benefit
蛋白质组学研究旨在了解卵巢肿瘤对针对 DNA 损伤反应的药物的反应,并将这些知识转化为临床益处
- 批准号:
9271779 - 财政年份:2017
- 资助金额:
$ 9.6万 - 项目类别:
Proteogenomic studies aimed at understanding ovarian tumor responses to agents targeting the DNA damage response and translating this knowledge into clinical benefit
蛋白质组学研究旨在了解卵巢肿瘤对针对 DNA 损伤反应的药物的反应,并将这些知识转化为临床益处
- 批准号:
10287121 - 财政年份:2017
- 资助金额:
$ 9.6万 - 项目类别:
The FGF18/FGFR4 amplicon: Novel therapeutic biomarkers for ovarian cancer
FGF18/FGFR4 扩增子:卵巢癌的新型治疗生物标志物
- 批准号:
8817261 - 财政年份:2013
- 资助金额:
$ 9.6万 - 项目类别:
The FGF18/FGFR4 amplicon: Novel therapeutic biomarkers for ovarian cancer
FGF18/FGFR4 扩增子:卵巢癌的新型治疗生物标志物
- 批准号:
9588790 - 财政年份:2013
- 资助金额:
$ 9.6万 - 项目类别:
The FGF18/FGFR4 amplicon: Novel therapeutic biomarkers for ovarian cancer
FGF18/FGFR4 扩增子:卵巢癌的新型治疗生物标志物
- 批准号:
8501801 - 财政年份:2013
- 资助金额:
$ 9.6万 - 项目类别:
The FGF18/FGFR4 amplicon: Novel therapeutic biomarkers for ovarian cancer
FGF18/FGFR4 扩增子:卵巢癌的新型治疗生物标志物
- 批准号:
9025469 - 财政年份:2013
- 资助金额:
$ 9.6万 - 项目类别:
Proteomic Genetic and Longitudinal Paths to Ovarian Cancer Biomarker Discovery
卵巢癌生物标志物发现的蛋白质组遗传学和纵向路径
- 批准号:
8147825 - 财政年份:2010
- 资助金额:
$ 9.6万 - 项目类别:
相似国自然基金
果蝇转座元件和piRNA之间的基因组冲突及对杂交不育的影响
- 批准号:91431101
- 批准年份:2014
- 资助金额:120.0 万元
- 项目类别:重大研究计划
优化基因组策略搜寻中国藏族内耳畸形的致病基因及其致聋机制研究
- 批准号:31071099
- 批准年份:2010
- 资助金额:40.0 万元
- 项目类别:面上项目
电离辐射诱发间充质干细胞基因组非稳定性的研究
- 批准号:31070759
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Mass Multivariate Derivation and Validation of AUD Biotypes using Developmental Imaging and Genomic Approaches
使用发育成像和基因组方法对 AUD 生物型进行大规模多变量推导和验证
- 批准号:
10429020 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Generation, Characterization, and Validation of Marmoset Models of Alzheimer's Disease
阿尔茨海默病狨猴模型的生成、表征和验证
- 批准号:
10494769 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Mass Multivariate Derivation and Validation of AUD Biotypes using Developmental Imaging and Genomic Approaches
使用发育成像和基因组方法对 AUD 生物型进行大规模多变量推导和验证
- 批准号:
10688177 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Generation, Characterization, and Validation of Marmoset Models of Alzheimer's Disease
阿尔茨海默病狨猴模型的生成、表征和验证
- 批准号:
10819807 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Optimizing Thermal Ablation for Colon Cancer Liver Metastases: Rapid Tissue Analysis Allowing for Immediate Retreatment; Metabolic Imaging Biomarker Validation; and Predictive Genetic Signatures
优化结肠癌肝转移的热消融:快速组织分析可立即进行再治疗;
- 批准号:
10017172 - 财政年份:2019
- 资助金额:
$ 9.6万 - 项目类别:
Optimizing Thermal Ablation for Colon Cancer Liver Metastases: Rapid Tissue Analysis Allowing for Immediate Retreatment; Metabolic Imaging Biomarker Validation; and Predictive Genetic Signatures
优化结肠癌肝转移的热消融:快速组织分析可立即进行再治疗;
- 批准号:
10245245 - 财政年份:2019
- 资助金额:
$ 9.6万 - 项目类别:
Biobanking and Biomarker Validation (BBV) Core
生物样本库和生物标志物验证 (BBV) 核心
- 批准号:
10582682 - 财政年份:2019
- 资助金额:
$ 9.6万 - 项目类别:
Biobanking and Biomarker Validation (BBV) Core
生物样本库和生物标志物验证 (BBV) 核心
- 批准号:
10115115 - 财政年份:2019
- 资助金额:
$ 9.6万 - 项目类别: