Statistical Models for Genetic Studies, Using Network and Integrative Analysis
使用网络和综合分析的遗传研究统计模型
基本信息
- 批准号:10134596
- 负责人:
- 金额:$ 25.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-21 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated
with hundreds of phenotypes and diseases, which in some cases have provided clinical and medical benefits
to patients with novel biomarkers and therapeutic targets. However, investigation of complex traits often
suffers from limited statistical power due to polygenicity, high dimensionality, and moderate sample size. While
it is practically challenging and costly to recruit patients to attain sufficient sample size to identify all associated
genetic variants, we recently showed that statistical power to identify risk associated genetic variants can be
significantly increased by 1) considering genetic basis shared among multiple phenotypes, namely pleiotropy,
and 2) incorporating genomic and genetic annotation data. However, effective integration of these datasets
becomes statistically more challenging as the number of genetic studies and annotation data increases.
The objective of this proposal is to develop statistical methods and software to improve identification and
interpretation of risk variants and to promote understanding of genetic relationship among phenotypes. This
objective will be attained by pursuing four specific aims. In Aim 1, we will develop a Bayesian graphical model
to identify risk variants and construct a phenotype network, by integrating multiple GWAS datasets with various
annotation data. In Aim 2, we will develop a Bayesian graphical model to build a phenotype network from
biomedical literature. In Aim 3, we will develop a statistical method to construct meta-annotations that can
effectively summarize high dimensional annotation data without losing interpretability. In Aim 4, we will apply
these methods to genetic studies of vascular complications and autoimmune diseases in African American
populations, with PubMed literature and various annotation datasets. The proposed research is innovative
because it proposes a novel statistical framework that integrates multiple GWAS, biomedical literature, and
annotation datasets to improve identification and interpretation of risk variants. The proposed research is
significant because it is expected to help improve diagnosis and treatment of diseases with more effective
identification of risk variants and enhanced understanding of common etiology among diseases.
全基因组关联研究(GWAS)已经确定了数以万计的遗传变异
具有数百种表型和疾病,在某些情况下可以提供临床和医疗益处
针对具有新型生物标志物和治疗靶标的患者。但是,经常对复杂性状进行调查
由于多基因,高维和中等样本量,统计功率有限。尽管
招募患者以获得足够的样本量以识别所有相关的样本量实际上具有挑战性和昂贵
遗传变异,我们最近表明,识别风险相关的遗传变异的统计能力可以是
显着增加1)考虑多种表型之间共享遗传基础,即多效性,
2)结合基因组和遗传注释数据。但是,有效整合了这些数据集
随着遗传研究的数量和注释数据的增加,从统计学上变得更具挑战性。
该建议的目的是开发统计方法和软件,以改善身份证明和
对风险变异的解释并促进对表型之间遗传关系的理解。这
追求四个特定目标将实现目标。在AIM 1中,我们将开发贝叶斯图形模型
通过将多个GWAS数据集集成到各种
注释数据。在AIM 2中,我们将开发一个贝叶斯图形模型,以从
生物医学文学。在AIM 3中,我们将开发一种统计方法来构建可以
有效地总结高维注释数据而不会失去可解释性。在AIM 4中,我们将申请
这些方法用于非裔美国人血管并发症和自身免疫性疾病的遗传研究
人群,具有PubMed文献和各种注释数据集。拟议的研究是创新的
因为它提出了一个新颖的统计框架,该框架整合了多个GWA,生物医学文献和
注释数据集以改善风险变体的识别和解释。拟议的研究是
重要的是因为有望帮助改善更有效的疾病的诊断和治疗
鉴定风险变异和对疾病中常见病因的了解增强。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongjun Chung其他文献
Dongjun Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongjun Chung', 18)}}的其他基金
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
- 批准号:
10629262 - 财政年份:2022
- 资助金额:
$ 25.79万 - 项目类别:
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
- 批准号:
10453133 - 财政年份:2022
- 资助金额:
$ 25.79万 - 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
10454143 - 财政年份:2018
- 资助金额:
$ 25.79万 - 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
9982281 - 财政年份:2018
- 资助金额:
$ 25.79万 - 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
10223254 - 财政年份:2018
- 资助金额:
$ 25.79万 - 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
- 批准号:
9788389 - 财政年份:2018
- 资助金额:
$ 25.79万 - 项目类别:
Statistical Models for Genetic Studies, Using Network and Integrative Analysis
使用网络和综合分析的遗传研究统计模型
- 批准号:
9920162 - 财政年份:2016
- 资助金额:
$ 25.79万 - 项目类别:
相似国自然基金
跨型号电池差异对其外特性的作用机制及普适性建模与健康度评估研究
- 批准号:52307233
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Petri网和DSM的型号产品协同设计过程和数据世系建模及分析方法研究
- 批准号:61170001
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
相似海外基金
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
- 批准号:
10656870 - 财政年份:2023
- 资助金额:
$ 25.79万 - 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 25.79万 - 项目类别:
Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
- 批准号:
10889304 - 财政年份:2023
- 资助金额:
$ 25.79万 - 项目类别:
Large-scale phylodynamics under non-neutral and non-treelike models of evolution
非中性和非树状进化模型下的大规模系统动力学
- 批准号:
10713003 - 财政年份:2023
- 资助金额:
$ 25.79万 - 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 25.79万 - 项目类别: