Statistical Models for Genetic Studies, Using Network and Integrative Analysis

使用网络和综合分析的遗传研究统计模型

基本信息

  • 批准号:
    10134596
  • 负责人:
  • 金额:
    $ 25.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-21 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which in some cases have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, investigation of complex traits often suffers from limited statistical power due to polygenicity, high dimensionality, and moderate sample size. While it is practically challenging and costly to recruit patients to attain sufficient sample size to identify all associated genetic variants, we recently showed that statistical power to identify risk associated genetic variants can be significantly increased by 1) considering genetic basis shared among multiple phenotypes, namely pleiotropy, and 2) incorporating genomic and genetic annotation data. However, effective integration of these datasets becomes statistically more challenging as the number of genetic studies and annotation data increases. The objective of this proposal is to develop statistical methods and software to improve identification and interpretation of risk variants and to promote understanding of genetic relationship among phenotypes. This objective will be attained by pursuing four specific aims. In Aim 1, we will develop a Bayesian graphical model to identify risk variants and construct a phenotype network, by integrating multiple GWAS datasets with various annotation data. In Aim 2, we will develop a Bayesian graphical model to build a phenotype network from biomedical literature. In Aim 3, we will develop a statistical method to construct meta-annotations that can effectively summarize high dimensional annotation data without losing interpretability. In Aim 4, we will apply these methods to genetic studies of vascular complications and autoimmune diseases in African American populations, with PubMed literature and various annotation datasets. The proposed research is innovative because it proposes a novel statistical framework that integrates multiple GWAS, biomedical literature, and annotation datasets to improve identification and interpretation of risk variants. The proposed research is significant because it is expected to help improve diagnosis and treatment of diseases with more effective identification of risk variants and enhanced understanding of common etiology among diseases.
全基因组关联研究(GWAS)已经确定了数万种与基因组相关的遗传变异。 有数百种表型和疾病,在某些情况下提供了临床和医疗益处, 新的生物标志物和治疗靶点。然而,对复杂性状的研究往往 由于多源性、高维性和中等样本量,统计功效有限。而 招募患者以获得足够的样本量来识别所有相关的 遗传变异,我们最近表明,统计能力,以确定风险相关的遗传变异,可以 1)考虑到多种表型之间共有的遗传基础,即多效性, 以及2)合并基因组和遗传注释数据。然而,这些数据集的有效整合 随着遗传研究和注释数据数量的增加,在统计上变得更具挑战性。 本提案的目标是开发统计方法和软件,以改善识别和 风险变异的解释和促进对表型之间遗传关系的理解。这 将通过实现四个具体目标来实现这一目标。在目标1中,我们将开发一个贝叶斯图模型 通过整合多个GWAS数据集, 注释数据。在目标2中,我们将开发一个贝叶斯图模型,从 生物医学文献在目标3中,我们将开发一种统计方法来构建元注释, 有效地概括高维注释数据而不损失可解释性。在目标4中,我们将应用 这些方法用于非裔美国人血管并发症和自身免疫性疾病的遗传学研究 人口,PubMed文献和各种注释数据集。该研究具有创新性 因为它提出了一个新的统计框架,整合了多个GWAS,生物医学文献, 注释数据集,以改善风险变体的识别和解释。拟议的研究是 重要的是,它有望帮助改善疾病的诊断和治疗, 确定风险变异,并加强对疾病共同病因的了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongjun Chung其他文献

Dongjun Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongjun Chung', 18)}}的其他基金

Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
  • 批准号:
    10629262
  • 财政年份:
    2022
  • 资助金额:
    $ 25.79万
  • 项目类别:
Statistical Power Calculation Framework for Spatially Resolved Transcriptomics Experiments
空间分辨转录组学实验的统计功效计算框架
  • 批准号:
    10453133
  • 财政年份:
    2022
  • 资助金额:
    $ 25.79万
  • 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
  • 批准号:
    10454143
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
  • 批准号:
    9982281
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
  • 批准号:
    10223254
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
The Genetic Basis of Opioid Dependence Vulnerablility in a Rodent Model
啮齿类动物模型中阿片类药物依赖脆弱性的遗传基础
  • 批准号:
    9788389
  • 财政年份:
    2018
  • 资助金额:
    $ 25.79万
  • 项目类别:
Statistical Models for Genetic Studies, Using Network and Integrative Analysis
使用网络和综合分析的遗传研究统计模型
  • 批准号:
    9920162
  • 财政年份:
    2016
  • 资助金额:
    $ 25.79万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Statistical Models for Genetic Studies, Using Network and Integrative Analysis
使用网络和综合分析的遗传研究统计模型
  • 批准号:
    9920162
  • 财政年份:
    2016
  • 资助金额:
    $ 25.79万
  • 项目类别:
Statistical Models for Mapping Genetic and Environmental Effects Regulating Shape Variation
用于绘制调节形状变化的遗传和环境影响的统计模型
  • 批准号:
    1413366
  • 财政年份:
    2014
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Standard Grant
Joining well-characterized phenotype and genetic exposures with powerful statistical models to understand gene-environment interactions in metabolic syndrome
将充分表征的表型和遗传暴露与强大的统计模型结合起来,以了解代谢综合征中基因与环境的相互作用
  • 批准号:
    288037
  • 财政年份:
    2013
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Operating Grants
Statistical Models of Maternal and Offspring Genetic Effects For Risk of Disease
母亲和后代遗传效应对疾病风险的统计模型
  • 批准号:
    7849557
  • 财政年份:
    2009
  • 资助金额:
    $ 25.79万
  • 项目类别:
Development of statistical genetic models and hierarchical Bayes procedures to predict emergence and dynamics of resistant alleles
开发统计遗传模型和分层贝叶斯程序来预测耐药等位基因的出现和动态
  • 批准号:
    19300094
  • 财政年份:
    2007
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Using genetic algorithms to build tree-structured statistical models
使用遗传算法构建树结构统计模型
  • 批准号:
    311980-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Discovery Grants Program - Individual
Using genetic algorithms to build tree-structured statistical models
使用遗传算法构建树结构统计模型
  • 批准号:
    311980-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of genetic-statistical models for Genomic Selection and QTL-Mapping
基因组选择和 QTL 定位的遗传统计模型分析
  • 批准号:
    29487966
  • 财政年份:
    2006
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Research Fellowships
Statistical Models for Studying the Genetic Architecture of Dynamic Traits
研究动态性状遗传结构的统计模型
  • 批准号:
    0540745
  • 财政年份:
    2006
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Continuing grant
Statistical models for genetic susceptibility to prostate and other common cancers
前列腺癌和其他常见癌症遗传易感性的统计模型
  • 批准号:
    nhmrc : 400470
  • 财政年份:
    2006
  • 资助金额:
    $ 25.79万
  • 项目类别:
    Early Career Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了