Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
基本信息
- 批准号:10092237
- 负责人:
- 金额:$ 109.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease therapeuticAmericanAreaArea Under CurveAssessment toolCaregiversCaringClinicalClinical dementia rating scaleCodeCost of IllnessDataDementiaDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisElderlyElectronic Health RecordEnsureFloridaFundingFutureGoldHealthcare SystemsImpaired cognitionIncidenceIndianaIndividualInvestigationMachine LearningMeasuresMedicalMedical Care CostsMedicareMethodsModelingNational Institute on AgingNaturePatient CarePatient Outcomes AssessmentsPatientsPerformancePersonsPhysiciansPrimary Health CareProcessPublic HealthQuick Test for Liver FunctionRandomizedRecommendationRuralSamplingScreening procedureServicesSiteStagingSymptomsSystemTestingTherapeuticTimeTranslationsUnited States National Institutes of HealthUniversitiesValidationVisitarmbasecognitive testingcohortcomparative effectivenesscomparative effectiveness trialcostcost effectivedesigndiagnosis standarddigitalearly detection biomarkerseffectiveness evaluationimprovedinstrumentmachine learning algorithmpatient screeningresponsescreeningsocietal costssuburbtoolvalidation studies
项目摘要
PROJECT SUMMARY/ABSTRACT
Every year Alzheimer’s disease and related dementias (ADRD) adversely affect millions of Americans at a
societal cost of more than $200 million.1 Concurrently, half of Americans living with ADRD never receive a
diagnosis.2-7 Early detection helps those with ADRD and their caregivers better plan and potentially lessen the
burden of lengthy and costly medical care. Current investigational approaches using biomarkers for early
detection are invasive, costly, and sometimes inaccessible to patients. The National Institute on Aging calls for
the development of effective, scalable and low cost approaches for early detection of ADRD (RFA-AG-20-051).
Currently, primary care clinicians provide the majority of care to older adults living with ADRD.1-5 Our
interdisciplinary scientific teams have developed and tested scalable early detection approaches.10, 11 We are
proposing to evaluate an integrated approach embedded in the Annual Wellness Visit (AWV) that leverages
Electronic Health Record systems, machine learning models, and patient reported outcomes to deploy a low-
cost and scalable approach for early detection of ADRD. Our proposed studies will leverage previously
developed machine learning models (Passive Digital Marker) and patient reported outcomes (Quick Dementia
Rating Scale). The design of our proposed studies is predicated on the notion that patient screening is done to
identify a more targeted group of referral for applicable diagnostic and management services. We will conduct
two complementary multi-site studies to evaluate the effectiveness of two scalable approaches for early
detection of ADRD. The first study will be a clinical validation study of the three scalable approaches; the
Passive Digital Marker (PDM) that uses EHR data, the Quick Dementia Rating Scale (QDRS) that uses patient
reported outcomes (PROs) imbedded within the EHR system, and the combination of both (PDM + QDRS).
The second study will be a pragmatic cluster-randomized controlled comparative effectiveness trial of two
screening approaches embedded within the AWV, as compared to the AWV-only process, in increasing the
incidence rate of new ADRD. In the final year of the study, we will share our codes for both the Passive Digital
Marker and the QDRS with Epic headquarters to ensure that these codes are available for any healthcare
system with Epic nationwide.
The high costs of treating Alzheimer’s disease and the costs incurred by patients and caregivers, both tangible
and intangible, are a major threat to public health and the US economy. Developing scalable and low cost
instruments and assessments integrated into EHR data will assist physicians in early detection, more and
better diagnoses, and clinically meaningful care recommendations. Cost effective, scalable, and noninvasive
models are urgently needed to proactively mitigate these costs and prolonged medical care.
项目摘要/摘要
每年,阿尔茨海默氏症和相关痴呆症(ADRD)对数百万美国人造成不利影响
超过2亿美元的社会成本1同时,一半患有ADRD的美国人从未收到过
诊断2-7早期发现有助于ADRD患者和他们的照顾者更好地制定计划,并有可能减少
长期和昂贵的医疗保健负担。目前使用生物标记物进行早期诊断的研究方法
检测是侵入性的,费用高昂,有时患者无法接触到。国家老龄研究所呼吁
开发有效、可扩展和低成本的ADRD早期检测方法(RFA-AG-20-051)。
目前,初级保健临床医生为患有ADRD.1-5的老年人提供大部分护理
跨学科科学团队已经开发并测试了可扩展的早期检测方法。10、11我们是
建议评估嵌入在年度健康访问(AWV)中的综合方法,该方法利用
电子健康记录系统、机器学习模型和患者报告结果,以部署低
用于早期检测ADRD的成本和可扩展的方法。我们提议的研究将利用之前
开发的机器学习模型(被动数字标记)和患者报告的结果(快速痴呆
评级等级)。我们提议的研究的设计是基于这样一个概念,即患者筛查是为了
为适用的诊断和管理服务确定更有针对性的转诊群体。我们将进行
两项互补的多点研究,以评估两种可扩展方法在早期治疗中的有效性
ADRD的检测。第一项研究将是对三种可扩展方法的临床验证研究;
使用EHR数据的被动数字标记(PDM),使用患者的快速痴呆症评定量表(QDR
EHR系统中嵌入的报告结果(PRO),以及两者的组合(PDM+QDR)。
第二项研究将是一项语用分组-随机对照比较有效性试验,
与仅使用AWV的流程相比,嵌入AWV中的筛选方法在增加
新发ADRD的发生率。在研究的最后一年,我们将分享我们的代码,为被动式数字
Marker和QDR与EPIC总部合作,以确保这些代码可用于任何医疗保健
在全国范围内使用Epic系统。
治疗阿尔茨海默病的高昂成本以及患者和照顾者的成本,两者都是有形的
而且是无形的,是对公共健康和美国经济的重大威胁。开发可扩展的低成本产品
集成到电子病历数据中的仪器和评估将帮助医生及早发现,以及更多
更好的诊断和临床上有意义的护理建议。经济高效、可扩展且非侵入性
迫切需要模型来主动降低这些成本和延长医疗护理时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MALAZ BOUSTANI其他文献
MALAZ BOUSTANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MALAZ BOUSTANI', 18)}}的其他基金
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
- 批准号:
10505463 - 财政年份:2022
- 资助金额:
$ 109.43万 - 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
- 批准号:
10416631 - 财政年份:2022
- 资助金额:
$ 109.43万 - 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
- 批准号:
10893170 - 财政年份:2022
- 资助金额:
$ 109.43万 - 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
- 批准号:
10649684 - 财政年份:2022
- 资助金额:
$ 109.43万 - 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
- 批准号:
10812844 - 财政年份:2022
- 资助金额:
$ 109.43万 - 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
- 批准号:
10685354 - 财政年份:2022
- 资助金额:
$ 109.43万 - 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
- 批准号:
10417225 - 财政年份:2020
- 资助金额:
$ 109.43万 - 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
- 批准号:
10662223 - 财政年份:2020
- 资助金额:
$ 109.43万 - 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
- 批准号:
10266121 - 财政年份:2020
- 资助金额:
$ 109.43万 - 项目类别: