A Technology-Driven Intervention to Improve Early Detection and Management of Cognitive Impairment
技术驱动的干预措施可改善认知障碍的早期检测和管理
基本信息
- 批准号:10092423
- 负责人:
- 金额:$ 59.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAdultAdvocateAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAttentionCaregiversCaringChronic DiseaseClinicClinicalClinical Decision Support SystemsDataDecision MakingDementiaDetectionDiabetes MellitusDiagnosisDistressDocumentationEarly DiagnosisElectronic Health RecordEthnic OriginFamilyFeelingFoundationsFutureGenderGuidelinesHealth BenefitHealth ExpendituresImpaired cognitionIndividualInpatientsInterventionInterviewInvestmentsMachine LearningMedicalMedicareModelingNewly DiagnosedOffice VisitsOnline SystemsPatient Care PlanningPatient-Focused OutcomesPatientsPhasePredictive ValuePrevalencePrimary Health CarePrintingPrivate SectorPublic Health InformaticsPublic SectorPublishingQuality of lifeRaceRandomizedReadinessRecommendationReportingRiskSocioeconomic StatusSpecialistStandardizationStressSuggestionSurveysSystemTechnologyTelephoneTestingTheory of ChangeTranslatingVisitWorkbasebehavior changecardiovascular risk factorcare systemsclinical decision supportcostdementia riskevidence basefollow-uphealth care service utilizationimprovedimproved outcomeindexingintervention effectmachine learning methodmild cognitive impairmentpersonalized carepragmatic trialpredictive modelingprototyperandomized trialresponsesatisfactionscreeningsociodemographicssuccesssupport toolstooltreatment as usual
项目摘要
Project Summary
The prevalence of Alzheimer’s disease (AD) and AD-related dementias (ADRD) is expected to triple by 2050,
contributing to decreased quality of life, increased medical care utilization, and additional burden on an already
stressed primary care system. Many clinicians lack confidence to assess, diagnose and manage cognitive
impairment (CI), and more than 50% of patients with CI are undiagnosed. Unfortunately, studies show that
even in settings with high rates of standardized CI screening, very few patients who screen positive have
documentation of any clinician follow-up action. To address these important problems, in phase 1 (R61) of this
project, we will develop and validate a machine learning model (called MC-PLUS) using results from brief Mini-
Cog (MC) screens completed routinely at Annual Medicare Wellness exams and electronic health record
(EHR) data to identify patients at elevated risk of a future dementia diagnosis (AD/ADRD). We will also develop
and validate a web-based and EHR-integrated CI clinical decision support (CI-CDS) system to engage patients
and clinicians in conversation about elevated dementia risk, and to give clinicians the confidence and tools
they need to diagnose and manage CI. Both MC-PLUS and the CI-CDS system will be added into an existing
web-based CDS platform that has high use rates and primary care clinician satisfaction, and is already
seamlessly integrated within the EHR. This CDS platform improves outcomes for patients with chronic
diseases such as diabetes and high cardiovascular risk as shown in published studies. We will systematically
validate the CI-CDS system with expert champions prior to conducting a pilot test at one primary care clinic.
After milestones for success are demonstrated, we will begin phase 2 (R33), a large pragmatic trial with 30
primary care clinics randomized to receive CI-CDS or usual care (UC). We will evaluate change in clinician
confidence in CI detection and care management in CI-CDS compared to UC clinics. If successful, the CI-CDS
system will improve rates of new CI diagnosis and narrow existing sociodemographic disparities in
adults with elevated dementia risk identified by MC-PLUS at index visit in CI-CDS compared to UC clinics. We
will evaluate the impact of the intervention on care management and care plans using EHR data and chart
audits. We will assess determinants of clinician actions in response to the CDS system using behavior change
theory and technology acceptance constructs, and conduct phone surveys of patient and caregiver dyads to
evaluate intervention effects on feelings of preparedness for decision making and distress. The CI-CDS system
is immediately scalable to large numbers of patients through the existing non-commercialized CDS platform
already in use for millions of patients in care systems spanning 14 states. The CDS system implemented as
described could maximize return on massive investments that have been made in EHR systems, and provide a
prototype to rapidly and consistently translate evolving evidence-based CI guidelines into personalized CI care
and guidance within primary care.
项目摘要
到2050年,阿尔茨海默病(AD)和AD相关性痴呆(ADRD)的患病率预计将增加两倍,
导致生活质量下降,医疗保健利用率增加,以及对已经
强调基层医疗体系。许多临床医生缺乏信心来评估,诊断和管理认知
脑损伤(CI),超过50%的CI患者未被诊断。不幸的是,研究表明,
即使在标准化CI筛查率高的环境中,也很少有筛查阳性的患者
记录任何临床医生随访措施。为了解决这些重要问题,在第一阶段(R61),
项目,我们将开发和验证一个机器学习模型(称为MC-PLUS)使用的结果,从简短的迷你,
在年度医疗保险健康检查和电子健康记录中定期完成Cog(MC)筛查
(EHR)数据,以确定未来痴呆诊断(AD/ADRD)风险升高的患者。我们还将开发
并验证一个基于网络和EHR集成的CI临床决策支持(CI-CDS)系统,以吸引患者
与临床医生讨论痴呆症风险升高的问题,并给予临床医生信心和工具,
他们需要诊断和管理CI。MC-PLUS和CI-CDS系统将被添加到现有的
基于网络的CDS平台,具有较高的使用率和初级保健临床医生的满意度,并且已经
与EHR无缝集成。该CDS平台改善了慢性胰腺炎患者的结局
如已发表的研究所示,糖尿病和高心血管风险等疾病。我们将系统地
在一个初级保健诊所进行试点测试之前,与专家冠军一起验证CI-CDS系统。
在成功的里程碑被证明后,我们将开始第2阶段(R33),这是一个大型的实用性试验,有30名
随机分配接受CI-CDS或常规治疗(UC)的初级保健诊所。我们将评估临床医生的变化
与UC诊所相比,CI-CDS中CI检测和护理管理的置信度。如果成功,CI-CDS
系统将提高新的CI诊断率,缩小现有的社会人口差异,
与UC诊所相比,在CI-CDS的首次访视时,MC-PLUS确定痴呆风险升高的成人。我们
将使用EHR数据和图表评估干预措施对护理管理和护理计划的影响
审计。我们将使用行为改变评估临床医生对CDS系统做出反应的决定因素
理论和技术接受结构,并对患者和护理人员进行电话调查,
评估干预对决策准备和痛苦感的影响。CI-CDS系统
可通过现有的非商业化CDS平台立即扩展到大量患者
已经在14个州的护理系统中为数百万患者使用。CDS系统实现为
所描述的可以最大限度地提高对EHR系统进行的大量投资的回报,并提供
原型,以快速和一致地将不断发展的循证CI指南转化为个性化CI护理
在基层指导下,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leah R Hanson其他文献
Retracted: Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states
- DOI:
10.1186/1744-8069-8-3 - 发表时间:
2012-01-11 - 期刊:
- 影响因子:2.800
- 作者:
Jose A Martinez;Manami Kasamatsu;Alma Rosales-Hernandez;Leah R Hanson;William H Frey;Cory C Toth - 通讯作者:
Cory C Toth
Retraction Note: Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states
- DOI:
10.1186/1744-8069-10-20 - 发表时间:
2014-04-02 - 期刊:
- 影响因子:2.800
- 作者:
Jose A Martinez;Manami Kasamatsu;Alma Rosales-Hernandez;Leah R Hanson;William H Frey;Cory C Toth - 通讯作者:
Cory C Toth
Leah R Hanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leah R Hanson', 18)}}的其他基金
A Technology-Driven Intervention to Improve Early Detection and Management of Cognitive Impairment
技术驱动的干预措施可改善认知障碍的早期检测和管理
- 批准号:
10266775 - 财政年份:2020
- 资助金额:
$ 59.2万 - 项目类别:
A Technology-Driven Intervention to Improve Early Detection and Management of Cognitive Impairment
技术驱动的干预措施可改善认知障碍的早期检测和管理
- 批准号:
10838956 - 财政年份:2020
- 资助金额:
$ 59.2万 - 项目类别:
A Technology-Driven Intervention to Improve Early Detection and Management of Cognitive Impairment
技术驱动的干预措施可改善认知障碍的早期检测和管理
- 批准号:
10685809 - 财政年份:2020
- 资助金额:
$ 59.2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.2万 - 项目类别:
Research Grant