Molecular and cellular mechanisms regulating actin dynamics
调节肌动蛋白动力学的分子和细胞机制
基本信息
- 批准号:10091492
- 负责人:
- 金额:$ 106.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisAnimalsBindingBiochemicalBiologicalBiological ProcessCardiovascular DiseasesCell divisionCell physiologyCellsComplexCryoelectron MicroscopyCytoskeletonCytosolDefectDeformityDiseaseDissociationEndocytosisF-ActinFilamentFundingGeneticGlia Maturation FactorGoalsGrowthHuntington DiseaseIn VitroIndividualInfertilityIntracellular TransportKnowledgeLeadLimb structureMalignant NeoplasmsMammalian CellMediatingMicrofilamentsMolecularMorphogenesisNational Institute of General Medical SciencesNucleotidesOrganismParkinson DiseaseProcessProteinsRegulationResearchRoleStructureSystemTestingTimeTissuesTotal Internal Reflection FluorescentWorkYeastsbasecell motilitycellular imagingcofilincoronin proteindepolymerizationdevelopmental diseasegenetic regulatory proteinhearing impairmenthuman diseasein vivoinhibitor/antagonistinsightmutantnew technologynovel strategiesprotein structurereconstitutionsingle molecule
项目摘要
Project Summary
The overall goal of the NIGMS-funded research in my lab is to define the molecular and cellular mechanisms
underlying dynamic rearrangements of the actin cytoskeleton, and to explore how these mechanisms are
harnessed in vivo (in yeast and animal cells) to control diverse actin-based processes such as cell motility,
endocytosis, intracellular transport, and cell morphogenesis. Genetic and biochemical research has been
rapidly producing a ‘molecular parts list’ for the actin cytoskeleton, and many of the components have been
characterized individually for their biochemical effects on actin filaments and their genetic effects on cellular
actin organization and function. However, it is becoming clear that most of these proteins do not function alone,
but rather in groups to perform their biological roles, and thus, new approaches are needed to define how they
work in concert to perform their cellular functions. Our lab is tackling this problem using advanced single
molecule TIRF microscopy to directly observe multi-component actin regulatory mechanisms in real time, and
testing these mechanisms using genetic, cell biological, biochemical, and structural approaches. Through this
approach, we have made fundamental new insights into actin regulation. For instance, we defined the first
collaborative actin nucleation mechanisms of formins (with Bud6 & APC). We discovered that formins and
Capping Protein can bind simultaneously at filament ends to accelerate each other’s dissociation. We showed
that Cofilin, AIP1, and Coronin work together via an ordered mechanism to sever and disassemble F-actin. We
discovered that Srv2/CAP works in conjunction with Cofilin and Twinfilin to depolymerize filament ends. In
parallel, we have combined genetics, cellular imaging, and separation-of-function mutants to dissect the
contributions of these mechanisms to actin-based processes in yeast and mammalian cells.
Moving forward, we will ask the following questions: what are the complete regulatory cycles of the two yeast
formins (Bni1 and Bnr1)? How is Arp2/3 complex-mediated actin nucleation balanced by its inhibitors (Coronin
and GMF) and activators (Las17/WASP and Abp1)? How is actin nucleation at the leading edge of motile cells
controlled by interactions among IQGAP1, APC and formins? How do interactions at filament ends between
Capping Protein and formins (and their in vivo binding partners) control actin network growth? How do the
filament severing and depolymerization mechanisms (Cofilin, AIP1, Coronin, Twinfilin, and Srv2/CAP) drive net
disassembly of actin under the assembly-promoting conditions of the cytosol? Are there actin-associated
proteins that accelerate the nucleotide state transition on F-actin to promote disassembly? In addition, we will
introduce new technologies and directions to our research, including in vitro reconstitution of cellular actin
structures, cryo-EM to study protein structure, cell-free extracts to genetically-biochemically dissect actin
mechanisms, and a systems-level approach to determine how genetic disruptions in individual actin regulators
affect the cellular levels, localization, and functions of the remaining actin-associated proteins.
项目摘要
我实验室NIGMS资助的研究的总体目标是确定分子和细胞机制
肌动蛋白细胞骨架的潜在动态重排,并探索这些机制是如何
在体内(在酵母和动物细胞中)控制不同的基于肌动蛋白的过程,如细胞运动,
内吞作用、细胞内运输和细胞形态发生。基因和生化研究一直是
快速生成肌动蛋白细胞骨架的分子部件清单,其中许多组件已经
它们对肌动蛋白细丝的生化效应和对细胞的遗传效应
肌动蛋白的组织和功能。然而,越来越明显的是,这些蛋白质中的大多数并不是单独发挥作用的,
而是以群体的形式发挥其生物学作用,因此,需要新的方法来定义它们是如何
协同工作以执行它们的细胞功能。我们的实验室正在使用高级单人电脑解决这个问题
分子TIRF显微镜,实时直接观察多组分肌动蛋白的调控机制,以及
使用遗传学、细胞生物学、生化和结构方法测试这些机制。通过这件事
方法,我们对肌动蛋白的调控有了全新的见解。例如,我们定义了第一个
Forins的肌动蛋白协同成核机制(与Bud6和APC)。我们发现福尔马林和
覆盖蛋白可以同时结合在丝状末端,从而加速彼此的解离。我们展示了
这种粘连蛋白、AIP1和柯罗宁通过一种有序的机制共同作用,切断和分解F-肌动蛋白。我们
发现Srv2/CAP与Cofilin和Twinfilin一起作用于解聚细丝末端。在……里面
同时,我们结合了遗传学、细胞成像和功能分离突变体来剖析
这些机制对酵母和哺乳动物细胞中基于肌动蛋白的过程的贡献。
接下来,我们将提出以下问题:这两种酵母的完整调控周期是什么
福尔马林(Bni1和Bnr1)?Arp2/3复合体介导的肌动蛋白核化是如何被其抑制物平衡的
和GMF)和激活剂(Las17/WASP和Abp1)?运动细胞前沿的肌动蛋白是如何成核的?
受IQGAP1、APC和福尔马林相互作用的控制?细丝端部的相互作用是如何
封端蛋白和福尔马林(及其体内结合伙伴)控制肌动蛋白网络的生长?你是如何
细丝切断和解聚机制(Cofilin、AIP1、Cortin、Twinfilin和Serv2/CAP)驱动网
肌动蛋白在胞浆组装促进条件下的分解?有没有肌动蛋白相关的
加速F-肌动蛋白的核苷酸状态转换以促进拆解的蛋白质?此外,我们还将
介绍我们研究的新技术和新方向,包括细胞肌动蛋白的体外重组
结构,冷冻-EM研究蛋白质结构,无细胞提取物基因-生化剖析肌动蛋白
机制,以及系统水平的方法来确定单个肌动蛋白调节器中的遗传干扰是如何
影响剩余肌动蛋白相关蛋白的细胞水平、定位和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce L Goode其他文献
Bruce L Goode的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce L Goode', 18)}}的其他基金
Molecular and cellular mechanisms regulating actin dynamics
调节肌动蛋白动力学的分子和细胞机制
- 批准号:
10549331 - 财政年份:2020
- 资助金额:
$ 106.73万 - 项目类别:
Molecular and cellular mechanisms regulating actin dynamics
调节肌动蛋白动力学的分子和细胞机制
- 批准号:
10343858 - 财政年份:2020
- 资助金额:
$ 106.73万 - 项目类别:
FORMINS AND NATIVE COMPLEXES: REGULATION AND FUNCTION
福尔明和天然复合物:调节和功能
- 批准号:
8171242 - 财政年份:2010
- 资助金额:
$ 106.73万 - 项目类别:
Regulation of formins and cell polarity in yeast
酵母中福尔明和细胞极性的调节
- 批准号:
8126615 - 财政年份:2010
- 资助金额:
$ 106.73万 - 项目类别:
Novel mechanisms regulating formins and cell polarity
调节福尔明和细胞极性的新机制
- 批准号:
8610321 - 财政年份:2008
- 资助金额:
$ 106.73万 - 项目类别:
FORMINS AND NATIVE COMPLEXES: REGULATION AND FUNCTION
福尔明和天然复合物:调节和功能
- 批准号:
7723632 - 财政年份:2008
- 资助金额:
$ 106.73万 - 项目类别:
Novel mechanisms regulating formins and cell polarity
调节福尔明和细胞极性的新机制
- 批准号:
8292733 - 财政年份:2008
- 资助金额:
$ 106.73万 - 项目类别:
Regulation of formins and cell polarity in yeast
酵母中福尔明和细胞极性的调节
- 批准号:
7354201 - 财政年份:2008
- 资助金额:
$ 106.73万 - 项目类别:
Novel mechanisms regulating formins and cell polarity
调节福尔明和细胞极性的新机制
- 批准号:
8449132 - 财政年份:2008
- 资助金额:
$ 106.73万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 106.73万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 106.73万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 106.73万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 106.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




