Engineering of Complex Infectious Loci in Culture
培养中复杂感染位点的工程
基本信息
- 批准号:10092952
- 负责人:
- 金额:$ 20.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbscessAnimalsArchitectureBacteriaBacterial ProteinsBiomedical EngineeringCell CommunicationCellsCommunicable DiseasesCommunicationCommunitiesComplexComputer-Aided DesignDevelopmentDiseaseDistalEngineeringEnsureEnvironmentEvaluationEventExposure toFluorescenceFocal InfectionGelGene Expression ProfileGene Expression ProfilingGenesGenetic TranscriptionGoalsGranulomaGrowthImmobilizationImmuneIndividualInfectionInflammatoryInterferonsIntestinesLaboratoriesLesionLiverLocationLymphocyteMicrobeMicrofluidic MicrochipsMicroscopicModelingMorphologyMusNOS2A geneNatureNecrosisNitric OxideNitrogenOrganismPasteurella pseudotuberculosisPathogenicityPeripheralPhagocytesPhagocytosisPhysiologicalPopulationProblem SolvingProcessPropertyProteinsReporterResearchSignal TransductionSiteSocial InteractionSorting - Cell MovementSpatial DistributionSpleenStressStructureSystemTechnologyTestingTissuesTranscriptVirulentWorkYersiniaantimicrobialbacterial communitybasebiological adaptation to stresscell communitycellular engineeringchronic infectiondraining lymph nodeexperimental studyextracellularhuman tissuemacrophagemacrophage productmicrobialmicrofluidic technologymicroorganismmonocyteneutrophilnovelpathogenpathogenic bacteriapreventreconstructionrecruitresponsetranscriptomics
项目摘要
A wide swath of bacterial pathogens grow within deep tissue sites during disease. Pathogen growth
in these sites results in the recruitment of immune cells that attempt to clear of the invader, but these cells
are often ineffective because the virulent organism blocks the clearing process. As a consequence, the
microorganism sets up a beachhead where it can either establish a persistent infection or venture to spread
throughout the host. Depending on the nature of the recruited cells and tissue damage that occurs, these
foci of infection are referred to as abscesses, microabscesses, granulomas, or some combination of
processes. For many pathogens that grow outside of host cells, distinct microcolonies are formed, predicted
to result in considerable intermicrobial communication and direct targeting of host cells surrounding the
colony. An overriding problem in the infectious disease field is that the resulting architecture can only be
established in animal infection models and cannot be maintained or analyzed in culture. This work
proposes to overcome this stumbling block.
Yersinia pseudotuberculosis is an enteropathogenic bacterium that can spread from the intestine
into regional lymph nodes, the liver and the spleen, establishing microcolonies surrounded by layers of
neutrophils, macrophages and inflammatory monocytes. The bacterium directly inactivates nearby
neutrophils, but there is a compensating attack by distal macrophages that generates nitric oxide (NO) and
its antimicrobial derivatives. Bacteria on the periphery of the microcolony inactivate NO, protecting their
centrally localized kin from exposure to toxic metabolites. The proposed Research Plan will exploit a
bioengineered gel microdroplet system to accurately reconstruct this battle. The Aims propose to analyze
Y. pseudotuberculosis interaction with immune cells, by growing bacteria in microcolonies within the gel
droplets, surrounding the droplets with adherent activated macrophages, morphologically mimicking a true
infectious site. Using a fluorescent reporter readout, the transcriptional profiles of peripheral and centrally
located bacteria will be analyzed, and compared to bacteria growing either in the absence of macrophage
stress or in a nonstructured environment. The system will be used to identify bacterial transcriptional circuits
that allow peripheral bacteria to maintain viability, and which protect the centrally located kin from attack. It
will also identify the bacterial transcriptional response to growth in aggregates found in tissues, as well as
identify previously uncharacterized physiological and stress responses of the small bacterial community to
secreted macrophage products. Successful completion of the Aims is part of the long-term goal of
determining how inter-bacterial interactions ensure the establishment of an infectious niche, and to evaluate
how anti-microbial immune cells collaborate with pathogens to promote disease.
在疾病期间,大量的细菌病原体在深层组织内生长。病原体生长
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph R. Isberg其他文献
Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in emAcinetobacter baumannii/em
鉴定可维持鲍曼不动杆菌高水平氟喹诺酮类耐药性的决定因素
- DOI:
10.1128/mbio.03221-24 - 发表时间:
2024-11-29 - 期刊:
- 影响因子:4.700
- 作者:
Efrat Hamami;Wenwen Huo;Juan Hernandez-Bird;Arnold Castaneda;Jinna Bai;Sapna Syal;Juan C. Ortiz-Marquez;Tim van Opijnen;Edward Geisinger;Ralph R. Isberg - 通讯作者:
Ralph R. Isberg
emStreptococcus pneumoniae/em favors tolerance via metabolic adaptation over resistance to circumvent fluoroquinolones
肺炎链球菌通过代谢适应而非对氟喹诺酮类药物的耐药性来偏好耐受性
- DOI:
10.1128/mbio.02828-23 - 发表时间:
2024-01-23 - 期刊:
- 影响因子:4.700
- 作者:
Tina H. Dao;Haley Echlin;Abigail McKnight;Enolia S. Marr;Julia Junker;Qidong Jia;Randall Hayden;Tim van Opijnen;Ralph R. Isberg;Vaughn S. Cooper;Jason W. Rosch - 通讯作者:
Jason W. Rosch
Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a emLegionella pneumophila/em protein that impinges on a stress response pathway
军团菌肺炎蛋白 LegA7 中受调节的半胱氨酸蛋白酶催化三联体的遗传证据,该蛋白影响应激反应途径
- DOI:
10.1128/msphere.00222-24 - 发表时间:
2024-08-19 - 期刊:
- 影响因子:3.100
- 作者:
Dar Hershkovitz;Emy J. Chen;Alexander W. Ensminger;Aisling S. Dugan;Kaleigh T. Conway;Alex C. Joyce;Gil Segal;Ralph R. Isberg - 通讯作者:
Ralph R. Isberg
Sde proteins coordinate ubiquitin utilization and phosphoribosylation to establish and maintain the Legionella replication vacuole
Sde 蛋白协调泛素利用和磷酸核糖基化,以建立和维持军团菌复制泡
- DOI:
10.1038/s41467-024-51272-2 - 发表时间:
2024-08-30 - 期刊:
- 影响因子:15.700
- 作者:
Kristin M. Kotewicz;Mengyun Zhang;Seongok Kim;Meghan S. Martin;Atish Roy Chowdhury;Albert Tai;Rebecca A. Scheck;Ralph R. Isberg - 通讯作者:
Ralph R. Isberg
Le mécanisme moléculaire de l'invasion cellulaire par Yersinia pseudotuberculosis par interaction de l'invasine et de l'intégrine
假结核耶尔森菌细胞侵袭分子机制与侵袭与整合相互作用
- DOI:
10.1016/s0924-4204(97)84731-2 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
P. Dersch;Ralph R. Isberg - 通讯作者:
Ralph R. Isberg
Ralph R. Isberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph R. Isberg', 18)}}的其他基金
The interface between L. pneumophila manipulation of host endoplasmic reticulum and innate immune subterfuge
嗜肺军团菌操纵宿主内质网与先天免疫诡计之间的界面
- 批准号:
10331320 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10259847 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10033724 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10444928 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10646234 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
The interface between L. pneumophila manipulation of host endoplasmic reticulum and innate immune subterfuge
嗜肺军团菌操纵宿主内质网与先天免疫诡计之间的界面
- 批准号:
10554261 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
相似海外基金
Maturation and resolution of Staphylococcus aureus skin abscess
金黄色葡萄球菌皮肤脓肿的成熟和消退
- 批准号:
MR/Y000447/1 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Fellowship
S. aureus virulence factor expression during kidney abscess formation
肾脓肿形成过程中金黄色葡萄球菌毒力因子的表达
- 批准号:
10610817 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
S. aureus virulence factor expression during kidney abscess formation
肾脓肿形成过程中金黄色葡萄球菌毒力因子的表达
- 批准号:
10370868 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
Characterization of T7SS in S. intermedius isolated from brain abscess to blood-brain barrier disruption
从脑脓肿分离到血脑屏障破坏的中间链球菌中 T7SS 的特征
- 批准号:
20K16257 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optical property measurement in human abscess cavities for photodynamic therapy treatment planning
人体脓肿腔光学特性测量,用于光动力疗法治疗计划
- 批准号:
10385790 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Optical property measurement in human abscess cavities for photodynamic therapy treatment planning
人体脓肿腔光学特性测量,用于光动力疗法治疗计划
- 批准号:
10025874 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Optical property measurement in human abscess cavities for photodynamic therapy treatment planning
人体脓肿腔光学特性测量,用于光动力疗法治疗计划
- 批准号:
10190942 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats
抗生素和负载抗生素的脂肪干细胞联合治疗可减少大鼠植入相关感染中脓肿的形成
- 批准号:
20K18057 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optical property measurement in human abscess cavities for photodynamic therapy treatment planning
人体脓肿腔光学特性测量,用于光动力疗法治疗计划
- 批准号:
10611934 - 财政年份:2020
- 资助金额:
$ 20.04万 - 项目类别:
Exploratory research for new methodology of diagnosis and treatments of gynecological pelvic abscess using MR Spectroscopy and Identification of bacteria species by NGS.
使用磁共振波谱和NGS鉴定细菌种类的妇科盆腔脓肿诊断和治疗新方法的探索性研究。
- 批准号:
18K16779 - 财政年份:2018
- 资助金额:
$ 20.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




