Development of an improved core technology for efficient genetic code expansion in biomedical research
开发改进的核心技术,用于生物医学研究中有效的遗传密码扩展
基本信息
- 批准号:10093096
- 负责人:
- 金额:$ 35.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-nitrotyrosineActive SitesAdoptedAffinityAlgorithm DesignAmberAmino AcidsAmino Acyl-tRNA SynthetasesAutoimmuneBacteriaBinding SitesBiochemicalBiological AssayBiological ModelsBiomedical ResearchCell Culture TechniquesCell modelCell physiologyCellsCodon NucleotidesComplexCouplingCross ReactionsDatabasesDevelopmentDirected Molecular EvolutionDistalEngineeringEpitopesEscherichia coliEukaryotaFunding OpportunitiesGTP BindingGenetic CodeGenetic EngineeringGoalsGreen Fluorescent ProteinsHuman PathologyIn VitroKineticsLaboratoriesLibrariesMalignant NeoplasmsMammalian CellMapsMeasurementMeasuresMetabolic DiseasesMethanosarcina barkeriMethodologyMethodsModelingMutagenesisMutateNational Institute of General Medical SciencesOrganismPathway interactionsPeptidesPerformancePhylogenetic AnalysisPhysiologicalPositioning AttributePrincipal InvestigatorProceduresProcessPropertyProtein BiosynthesisProtein EngineeringProteinsProtocols documentationRNAReporterResearchResearch PersonnelSamplingSchemeSourceSpecific qualifier valueStructureSyndromeSystemTechnologyTransfer RNATyrosine-tRNA LigaseWorkbasecellular engineeringchemical groupdesigndirect applicationhigh riskhuman diseaseimprovedin vivoinnovationmolecular sequence databasenovelnovel therapeuticsoverexpressionprematureprotein expressionprotein functionresearch and developmentresponsescreeningstemtechnology developmenttherapeutic developmenttherapy developmenttool
项目摘要
Title: Development of an improved core technology for efficient genetic code expansion in biomedical
research
Principal Investigator: Ryan Mehl
Summary
Genetic code expansion (GCE) allows the introduction of noncanonical amino acids (ncAAs) into proteins.
This provides a powerful toolbox to manipulate and expand biochemical activities, opens new possibilities
to control protein function in cells, and creates new therapeutics against many human pathologies,
including cancer, autoimmune syndromes, and metabolic diseases. First developed in bacterial systems,
biomedical applications of GCE are now rapidly increasing as a consequence of recently expanded abilities
in both mammalian cell culture and model multicellular organisms. Despite these advances and the
enormous potential of the technology, a key challenge to fully implementing GCE – especially for in vivo
applications – is the inefficient synthesis of ncAA-containing proteins in recoded bacterial and mammalian
cells. In particular, a variety of studies in recent years have converged on identifying the key bottleneck in
the technology: creating efficient pairs of orthogonal aminoacyl-tRNA synthetases (o-RS) and transfer
RNAs (o-tRNAs). Indeed, studies indicate that existing o-RS/tRNA pairs are two to five orders of
magnitude less efficient than naturally occurring pairs. Our goal in this proposal is to eliminate this
bottleneck by (1) developing a generally applicable approach for optimizing the function of engineered
o-RS/tRNA pairs, and (2) creating improved “high-efficiency” chassis for current workhorse o-RS/tRNA
pairs. With these advances, in vivo GCE studies to probe cellular functions can be carried out in ways that
generate proteins containing one or more ncAAs at similar concentrations and regulatory control as in
natural cells, and do it consistently without massive amounts of truncation products or excess GCE
components that cause confounding disturbances. No one has yet attempted to systematically attack this
problem. Our approach has two key features as compared to all prior work in the field. First, we will
generate a novel, detailed database correlating in vitro kinetic properties of purified o-RS/tRNA with the
performance of the same o-RS/tRNA pairs in protein synthesis in vivo and in cell-free bacterial and
mammalian extracts. Second, we will develop and apply an iterative process to improve existing o-
RS/tRNA pairs, guided by both computational approaches and experimental determination of allosteric
pathways, in order to optimize the design of libraries covering portions of the protein-tRNA complexes
outside the well-explored primary ncAA binding site. These libraries are then incorporated into directed
evolution approaches to select for catalytically improved pairs. We propose this innovative approach in
response to a specific NIGMS funding opportunity focused on technology development to enable
biomedical research, and it fully embodies the qualities specified by PAR-17-045 for the creation of broadly
applicable new research tools that are higher-risk ventures with truly transformational potential.
标题:生物医学领域高效遗传密码扩展的改进核心技术的开发
研究
主要研究者:Ryan Mehl
总结
遗传密码扩展(GCE)允许将非经典氨基酸(ncAAs)引入蛋白质中。
这提供了一个强大的工具箱来操纵和扩展生物化学活动,
来控制细胞中的蛋白质功能,并创造了针对许多人类疾病的新疗法,
包括癌症、自身免疫综合征和代谢疾病。最初是在细菌系统中发展起来的,
由于最近能力的扩展,GCE的生物医学应用正在迅速增加
在哺乳动物细胞培养物和多细胞生物模型中。尽管取得了这些进步,
该技术的巨大潜力,是全面实施GCE的关键挑战-特别是对于体内
应用-是重新编码的细菌和哺乳动物中含ncAA的蛋白质的低效合成
细胞特别是,近年来的各种研究都集中在确定关键的瓶颈,
该技术:创建高效的正交氨酰-tRNA合成酶对(o-RS),
RNA(o-tRNA)。事实上,研究表明,现有的o-RS/tRNA对是两到五个数量级,
比自然发生的对效率低。我们在这个提案中的目标是消除这一点
瓶颈(1)开发一种普遍适用的方法,用于优化工程的功能,
o-RS/tRNA对,以及(2)为当前的主力o-RS/tRNA创建改进的“高效”底盘
对.有了这些进展,体内GCE研究,以探测细胞功能可以进行的方式,
产生含有一种或多种ncAA的蛋白质,其浓度和调节控制与
天然细胞,并始终没有大量的截断产物或过量的GCE
造成干扰的部件。还没有人试图系统地攻击这一点
问题.我们的方法有两个关键特征相比,在该领域的所有先前的工作。一是
生成一个新的、详细的数据库,将纯化的o-RS/tRNA的体外动力学特性与
相同的o-RS/tRNA对在体内和无细胞细菌中的蛋白质合成中的性能,
哺乳动物提取物。第二,我们将开发和应用一个迭代过程,以改善现有的o-
RS/tRNA对,由计算方法和变构的实验测定指导
途径,以优化覆盖蛋白质-tRNA复合物部分的文库的设计
在充分探索的主要ncAA结合位点之外。然后将这些库并入定向
进化方法来选择催化改进的对。我们提出了这种创新的方法,
对专注于技术开发的特定NIGMS资助机会的响应,以实现
生物医学研究,它充分体现了PAR-17-045规定的广泛创造的品质
适用的新研究工具,是真正具有变革潜力的高风险企业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RYAN A MEHL其他文献
RYAN A MEHL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RYAN A MEHL', 18)}}的其他基金
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10558725 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10799462 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10335009 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
10641726 - 财政年份:2015
- 资助金额:
$ 35.91万 - 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
10439859 - 财政年份:2015
- 资助金额:
$ 35.91万 - 项目类别:
Defining Roles Of NitroTyrosine In Disease Via Genetic Code Expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
8865130 - 财政年份:2015
- 资助金额:
$ 35.91万 - 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
10299521 - 财政年份:2015
- 资助金额:
$ 35.91万 - 项目类别:
Defining Roles Of NitroTyrosine In Disease Via Genetic Code Expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
9105425 - 财政年份:2015
- 资助金额:
$ 35.91万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 35.91万 - 项目类别:
Discovery Grants Program - Individual