Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
基本信息
- 批准号:10299521
- 负责人:
- 金额:$ 28.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-05 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-nitrotyrosineALS pathologyAlzheimer&aposs DiseaseAmino AcidsAmyotrophic Lateral SclerosisAnimal ModelArthritisAtherosclerosisBackBacteriaBiological AssayBiological MarkersCell Culture TechniquesCellsCellular biologyColon CarcinomaDevelopmentDiseaseEnzymatic BiochemistryEnzymesEscherichia coliEukaryotic CellEvaluationExcisionFamilyGenetic CodeGrowthHandIn VitroInfectionInflammationKnock-outLeadLibrariesLiteratureMAPK3 geneMalignant NeoplasmsMammalian CellMethodsModificationMusNerve DegenerationOrganOxidative StressParkinson DiseasePathologicPathologyPhosphoric Monoester HydrolasesPhysiologicalPhysiologyPost-Translational Protein ProcessingProcessPropertyProtein Tyrosine PhosphataseProteinsProteomeReactive Nitrogen SpeciesRecombinant ProteinsRegulationReportingResearchRoleSepsisSeveritiesSignal TransductionSiteSpecificitySpeedStressStrokeStructural ModelsStructureStructure-Activity RelationshipSubstrate InteractionSubstrate SpecificitySuicideTechnologyTertiary Protein StructureTherapeutic InterventionTimeTissuesTumor Suppressor ProteinsTyrosineUniversitiesWorkXenograft procedurechronic paincrosslinkhuman diseaseimprovedin vivoinhibitor/antagonistinsightlung injurymouse modelnitrationpaxillinreceptorresponsestructural biologysuccesstooltumor growth
项目摘要
The role of reactive nitrogen species in over eighty human diseases including atherosclerosis, cancer,
neurodegeneration, and stroke is well demonstrated by the accumulation of the biomarker 3-nitrotyrosine
(nitroTyr). NitroTyr is not randomly distributed across the proteome as might be expected, but rather is found on
specific tyrosines on specific proteins. In response to these observations, the PI has greatly advanced this field
by developing genetic code expansion (GCE) technologies enabling site-specific incorporation of nitroTyr into
recombinant proteins in bacteria and mammalian cells. Collaborative work using these tools has now firmly
established that nitroTyr-proteins are causative agents in amyotrophic lateral sclerosis, atherosclerosis, and
cancer, supporting our central hypothesis that nitroTyr-modified proteins are key players in human disease and
that understanding the basis for their accumulation and removal, as well as their mechanistic roles in pathology
will lead to new opportunities for therapeutic intervention. Further support comes from the breakthrough
discovery of a denitrase enzyme that is a tumor suppressor: the “D2” pseudo-phosphatase domain of the protein
tyrosine phosphatase receptor T (PTPRTD2) is a tyrosine denitrase that when knocked out promotes cancer
growth. This upends the paradigm that nitroTyr-proteins are an unregulated by-product of stress and makes
possible a new research strategy that should accelerate progress. Instead of identifying specific diseases and
associated nitroTyr modified proteins one at a time, under the hypothesis that this denitrase represents a new
enzyme family involved in regulating the impact of nitroTyr, characterizing these denitrases and the breadth of
their substrates should speed the identification of physiologically relevant nitroTyr modifications and also provide
new avenues to define their impact. This will be done through pursuing two aims that encompass: (1) defining
the denitrase substrate scope and the structure-function relationships critical for substrate recognition, and (2)
converting denitrases and their substrates into traps and inhibitors which will be used to identify
denitrase/substrate pairs and aid studies of their physiological/pathological impacts in cells. Preliminary work
demonstrating feasibility has already identified two additional denitrase substrates, which have altered function
upon site-specific nitration. The proposed work to define what nitroTyr proteins are substrates of denitrases will
also help resolve why nitrated proteins accumulate in disease, and for every case in which it is discovered that
a denitrase/nitroTyr-substrate pair contribute to pathology development, the mapping of that process will open
up a new avenue for therapeutic intervention. As (i) the developer of existing nitroTyr GCE technologies, (ii) an
enzymologist and (iii) acting director of the Unnatural Protein Facility, the PI is superbly qualified to lead this work
and all needed facilities are available. Furthermore, key collaborators are already engaged who bring the
expertise in structural biology and cell biology needed for the breadth of work proposed.
活性氮在80多种人类疾病中的作用,包括动脉粥样硬化,癌症,
神经退行性变,生物标志物3-硝基酪氨酸的积累很好地证明了中风
(硝基Tyr)。NitroTyr并不像预期的那样随机分布在蛋白质组中,而是在蛋白质组中发现。
特定蛋白质上的特定酪氨酸针对这些观察结果,PI极大地推进了这一领域
通过开发遗传密码扩展(GCE)技术,使得能够将硝基Tyr位点特异性地掺入到
在细菌和哺乳动物细胞中的重组蛋白。使用这些工具的协作工作现已牢固地
确定硝基酪氨酸蛋白是肌萎缩侧索硬化症、动脉粥样硬化和
癌症,支持我们的核心假设,即硝基酪氨酸修饰的蛋白质是人类疾病的关键参与者,
了解它们的积累和去除的基础,以及它们在病理学中的机械作用,
将为治疗干预带来新的机会。进一步的支撑来自于突破
发现了一种肿瘤抑制剂-
酪氨酸磷酸酶受体T(PTPRTD 2)是一种酪氨酸磷酸酶,当敲除时会促进癌症
增长这颠覆了硝基酪氨酸蛋白质是压力不受调节的副产品的范式,
一项新的研究策略可能会加速进展。而不是识别特定的疾病,
相关的硝基酪氨酸修饰的蛋白质一次一个,假设这种酶代表一种新的
参与调节硝基酪氨酸的影响的酶家族,表征这些酶和
它们的底物应该加速生理学相关硝基Tyr修饰的鉴定,并且还提供了
确定其影响的新途径。这将通过追求两个目标来实现,包括:(1)界定
酶底物范围和对底物识别至关重要的结构-功能关系,以及(2)
将酶及其底物转化为陷阱和抑制剂,
酶/底物对,并帮助研究其在细胞中的生理/病理影响。前期工作
证明其可行性的研究已经确定了另外两种功能改变的酶底物,
在特定位点的硝化作用下所提出的工作,以确定什么样的硝基酪氨酸蛋白质是底物的酶将
也有助于解决为什么硝化蛋白质在疾病中积累,对于每一个发现的病例,
一个酶/硝基酪氨酸-底物对有助于病理学的发展,该过程的映射将打开
开辟了一条治疗干预的新途径。作为(i)现有硝基Tyr GCE技术的开发商,(ii)
酶学家和(iii)非天然蛋白质设施的代理主任,PI非常有资格领导这项工作
所有需要的设施都有。此外,主要合作者已经参与进来,
结构生物学和细胞生物学方面的专业知识,以满足拟议工作的广度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RYAN A MEHL其他文献
RYAN A MEHL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RYAN A MEHL', 18)}}的其他基金
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10558725 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10799462 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10335009 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Development of an improved core technology for efficient genetic code expansion in biomedical research
开发改进的核心技术,用于生物医学研究中有效的遗传密码扩展
- 批准号:
10093096 - 财政年份:2019
- 资助金额:
$ 28.07万 - 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
10641726 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别:
Defining roles of nitroTyrosine in desease via genetic code expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
10439859 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别:
Defining Roles Of NitroTyrosine In Disease Via Genetic Code Expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
8865130 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别:
Defining Roles Of NitroTyrosine In Disease Via Genetic Code Expansion
通过遗传密码扩展定义硝基酪氨酸在疾病中的作用
- 批准号:
9105425 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别:
相似海外基金
Elucidation of ALS pathology caused by disruption of NEK1-mediated cell signaling pathway
阐明 NEK1 介导的细胞信号通路破坏引起的 ALS 病理学
- 批准号:
22K15702 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Viral-based Therapeutic Approaches for Reversal of ALS Pathology
逆转 ALS 病理的病毒治疗方法
- 批准号:
10685571 - 财政年份:2020
- 资助金额:
$ 28.07万 - 项目类别:
Viral-based Therapeutic Approaches for Reversal of ALS Pathology
逆转 ALS 病理的病毒治疗方法
- 批准号:
10255529 - 财政年份:2020
- 资助金额:
$ 28.07万 - 项目类别:
Viral-based Therapeutic Approaches for Reversal of ALS Pathology
逆转 ALS 病理的病毒治疗方法
- 批准号:
10054910 - 财政年份:2020
- 资助金额:
$ 28.07万 - 项目类别:
Mapping TDP-43 RNA binding partners in motor neuron differentiation and ALS pathology
绘制运动神经元分化和 ALS 病理学中 TDP-43 RNA 结合伴侣的图谱
- 批准号:
2250125 - 财政年份:2019
- 资助金额:
$ 28.07万 - 项目类别:
Studentship
DEAD box RNA helicases are involved in sporadic ALS pathology
DEAD box RNA解旋酶参与散发性ALS病理学
- 批准号:
19K07845 - 财政年份:2019
- 资助金额:
$ 28.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The effect of ATF6 deletion on ALS pathology
ATF6 缺失对 ALS 病理的影响
- 批准号:
26430069 - 财政年份:2014
- 资助金额:
$ 28.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Participation in ALS pathology of ALS linked mutant SOD1 proteins accumulated in MAM
MAM 中积累的 ALS 连锁突变 SOD1 蛋白参与 ALS 病理学
- 批准号:
24700391 - 财政年份:2012
- 资助金额:
$ 28.07万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The participation of p47, which interacts with TDP-43 as a causative protein of ALS, in ALS pathology
p47 作为 ALS 致病蛋白与 TDP-43 相互作用,参与 ALS 病理学
- 批准号:
22700404 - 财政年份:2010
- 资助金额:
$ 28.07万 - 项目类别:
Grant-in-Aid for Young Scientists (B)