A novel regulating pathway in osteoclastogenesis and arthritic bone resorption
破骨细胞生成和关节炎骨吸收的新调节途径
基本信息
- 批准号:10091971
- 负责人:
- 金额:$ 37.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArthritisAttenuatedBindingBiologyBone ResorptionBone remodelingCSF1R geneCalpainCell NucleusCell surfaceCellsChIP-seqCleaved cellComplexCouplingDNADataDefectDeformityDevelopmentDiagnosticDiseaseEventExhibitsFeedbackFibroblastsFunctional disorderGene ExpressionGene Expression RegulationGenerationsGoalsImmuneImpairmentIn VitroInflammatoryInflammatory ArthritisInterferon-betaInvestigationJointsKnowledgeLinkLyticMacrophage Colony-Stimulating FactorMacrophage Colony-Stimulating Factor ReceptorMalignant NeoplasmsMediatingMetabolic Bone DiseasesMetastatic Neoplasm to the BoneMorbidity - disease rateMusMyelogenousNamesOsteoblastsOsteoclastsOsteoporosisPathogenesisPathway interactionsPhenotypePhysiologicalPlayProcessProteolysisReceptor SignalingRegulatory PathwayRheumatoid ArthritisRoleSignal PathwaySignal TransductionSurfaceSymptomsTNF geneTNF-alpha converting enzymeTestingTherapeuticTransgenic MiceWorkattenuationbonebone erosionbone lossbone masschronic autoimmune diseasechronic inflammatory diseaseclinical developmentcytokineexperimental studygamma secretasegenetic approachin vivoinsightmRNA Exportmacrophagemembernovelosteoclastogenesispathologic bone resorptionpreventprogramsreceptorrelease factorresponsetherapeutically effectivetranscriptometranscriptomics
项目摘要
Osteoclasts are large myeloid-derived multinucleated cells primarily responsible for bone
resorption. Dysregulation of osteoclast differentiation can result in net bone resorption and is key to the
pathophysiology of rheumatoid arthritis, osteoporosis, and lytic bone metastasis. Thus, understanding the
mechanism of osteoclast differentiation is of great therapeutic importance for nearly all forms of metabolic
bone disease. Our long-term goals are 1) to elucidate a role of the newly described regulatory pathway in
osteoclastogenesis and arthritic bone resorption and 2) to develop an effective and specific way to treat
bone loss in RA. c-FMS, a receptor for M-CSF/ IL-34, transduces essential signals for the differentiation of
osteoclasts and macrophages. Aberrant expression of c-FMS (or M-CSF) has been linked to exacerbation
of diseases such as inflammatory arthritis and cancers. We have identified a novel regulatory pathway of
c-FMS initiated by TACE (TNF-α converting enzyme). This pathway involves the coordinated, sequential
cleavage of c-FMS by TACE, γ-secretase, and calpain, which results in the generation of intracellular
domain cleavage fragments (referred to as FICD). Myeloid-specific TACE-deficient mice have high bone
mass with decreased osteoclast numbers and ameliorate bone destruction in TNF-α induced arthritis in
TNF transgenic (tg) mice. We found that FICD generation is critical for osteoclastogenesis, as enforced
expression of FICD rescues the impaired osteoclastogenesis seen in TACE deficient cells. Thus, in
addition to the well known role of c-FMS to activate conventional M-CSF signaling pathways as a surface
receptor, c-FMS is also processed into the FICD that traffics into the nucleus, where it functions as a
positive regulator of osteoclastogenesis. The existing paradigm is that shedding of c-FMS from the cell
surface is a negative event related to loss of a signaling receptor. However, our study led us to discover
that TACE-mediated shedding of c-FMS provides a positive signal for osteoclastogenesis. Here, we seek
to build upon our novel findings to unravel the mechanisms by which the TACE/FICD axis regulates bone
resorption, with a specific focus on inflammatory arthritis. Thus, we hypothesize that :1) TACE deficiency-
mediated attenuation of arthritic bone resorption is, in part, due to lack of FICD, 2) Inhibition of the
TACE/FICD axis ameliorates arthritic bone resorption, and 3) FICD targets the transcriptomic program in
osteoclastic bone resorption. Our specific aims are 1) to investigate the underlying mechanisms behind
how the TACE/FICD axis regulates pathological bone resorption in TNF-tg mice and 2) to elucidate the
mechanism by which the TACE/FICD axis regulates osteoclastogenesis by identifying the direct
pathways/targets of FICD. We anticipate that a better understanding of the diverse roles of this TACE/c-
FMS/FICD pathway will advance our understanding of fundamental osteoclast biology, and targeting the
TACE/FICD axis may provide new ways to attenuate bone resorption in inflammatory arthritis.
破骨细胞是主要负责骨形成的大型骨髓源性多核细胞
再吸收破骨细胞分化的失调可导致净骨吸收,并且是破骨细胞分化的关键。
类风湿性关节炎、骨质疏松症和溶解性骨转移的病理生理学。因此,了解
破骨细胞分化的机制对于几乎所有形式的代谢性疾病都具有重要的治疗意义。
骨病我们的长期目标是:1)阐明新描述的调控途径在以下方面的作用:
破骨细胞生成和关节炎性骨吸收,以及2)开发有效和特异性的治疗方法
RA中的骨丢失。c-FMS是M-CSF/ IL-34的受体,转导分化的基本信号,
破骨细胞和巨噬细胞。c-FMS(或M-CSF)的异常表达与急性加重有关
例如炎症性关节炎和癌症。我们已经确定了一种新的调节途径,
TACE(TNF-α转化酶)启动c-FMS。这条途径涉及协调的,顺序的
TACE、γ-分泌酶和钙蛋白酶切割c-FMS,导致细胞内
结构域切割片段(称为FICD)。骨髓特异性TACE缺陷小鼠具有高骨密度,
TNF-α诱导的关节炎中破骨细胞数量减少并改善骨破坏的肿块,
TNF转基因(tg)小鼠。我们发现FICD的产生对于破骨细胞的生成至关重要,
FICD的表达挽救了在TACE缺陷细胞中观察到的受损的破骨细胞生成。因此在
除了众所周知的c-FMS激活常规M-CSF信号通路作为表面活性剂的作用外,
受体,c-FMS也被加工成FICCD,FICCD进入细胞核,在那里它作为一个
破骨细胞生成的正调节因子。现有的范例是c-FMS从细胞脱落
表面是与信号受体的损失相关的负面事件。然而,我们的研究发现,
TACE介导的c-FMS脱落为破骨细胞生成提供了阳性信号。在这里,我们寻求
以我们的新发现为基础,阐明TACE/FICD轴调节骨的机制
吸收,特别关注炎症性关节炎。因此,我们假设:1)TACE缺陷-
介导的关节炎骨吸收减弱部分是由于缺乏FICD,2)抑制
TACE/FICD轴改善关节炎骨吸收,3)FICD靶向转录组程序,
骨吸收我们的具体目标是:1)调查背后的潜在机制
TACE/FICD轴如何调节TNF-tg小鼠的病理性骨吸收,2)阐明
TACE/FICD轴通过识别直接的
FICD的途径/靶点。我们预计,更好地理解这种TACE/c的不同作用-
FMS/FICD通路将促进我们对破骨细胞基本生物学的理解,并靶向
TACE/FICD轴可能为减轻炎症性关节炎骨吸收提供新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyung-Hyun Park-Min其他文献
Kyung-Hyun Park-Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyung-Hyun Park-Min', 18)}}的其他基金
Osteoclast programming and reprogramming during osteoclastogenesis
破骨细胞生成过程中的破骨细胞编程和重编程
- 批准号:
10776112 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
The Crosstalk between MYC and Metabolism during Osteoclastogenesis
破骨细胞生成过程中 MYC 与代谢之间的串扰
- 批准号:
9764279 - 财政年份:2016
- 资助金额:
$ 37.44万 - 项目类别:
The Crosstalk between MYC and Metabolism during Osteoclastogenesis
破骨细胞生成过程中 MYC 与代谢之间的串扰
- 批准号:
9356304 - 财政年份:2016
- 资助金额:
$ 37.44万 - 项目类别:
The Crosstalk between MYC and Metabolism during Osteoclastogenesis
破骨细胞生成过程中 MYC 与代谢之间的串扰
- 批准号:
9236300 - 财政年份:2016
- 资助金额:
$ 37.44万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8819229 - 财政年份:2014
- 资助金额:
$ 37.44万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8838046 - 财政年份:2014
- 资助金额:
$ 37.44万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8300268 - 财政年份:2012
- 资助金额:
$ 37.44万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8459400 - 财政年份:2012
- 资助金额:
$ 37.44万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Tissue tropism of PD-1 therapy in ulcerative colitis and rheumatoid arthritis
PD-1治疗溃疡性结肠炎和类风湿性关节炎的组织向性
- 批准号:
MR/Y009681/1 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Research Grant
Preclinical development of an extracellular vesicle biotherapeutic for juvenile idiopathic arthritis
幼年特发性关节炎细胞外囊泡生物治疗药物的临床前开发
- 批准号:
10068495 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Collaborative R&D
The delivery of miR-9 and RasGRP4 siRNA via high selectivity bispecific antibody conjugated lactosome: Targeting therapy for rheumatoid arthritis (RA) active synovial macrophage and osteoclast
通过高选择性双特异性抗体缀合乳糖体递送 miR-9 和 RasGRP4 siRNA:类风湿性关节炎 (RA) 活性滑膜巨噬细胞和破骨细胞的靶向治疗
- 批准号:
24K19237 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring the inflammatory mediators degraded by MMP-2 in MMP-2-deficient mice with knee arthritis through a novel TMT-TAILS quantitative proteomics
通过新型 TMT-TAILS 定量蛋白质组学探索 MMP-2 缺陷型膝关节炎小鼠中 MMP-2 降解的炎症介质
- 批准号:
24K19850 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an adaptive platform trial to prevent Rheumatoid Arthritis in partnership with First Nations People.
与原住民合作开发预防类风湿关节炎的适应性平台试验。
- 批准号:
491810 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Operating Grants
The role of diet, as mediated by the gut microbiome, on childhood arthritis disease activity: a feasibility intervention study.
肠道微生物组介导的饮食对儿童关节炎疾病活动的作用:一项可行性干预研究。
- 批准号:
489316 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Operating Grants
DEMORA: DEep spatial characterization of synovial MacrOphages in Rheumatoid Arthritis
DEMORA:类风湿性关节炎滑膜巨噬细胞的深度空间特征
- 批准号:
EP/Y027760/1 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Fellowship
Investigation of hypoxia-inducible factor-1 (HIF-1) as a novel therapeutic target for juvenile idiopathic arthritis.
研究缺氧诱导因子-1 (HIF-1) 作为幼年特发性关节炎的新治疗靶点。
- 批准号:
23K14987 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别: